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Pair correlated angular momentum projected standard Weyl tableau states spanning an m
dimensional paired shell-model space have been obtained for a system of 2N identical nucleons. 
A simple procedure has been developed for carrying out the restriction of the unitary group 
U (m) to the rotation group 0 ( 3) for configurations of both single and multilevel distributions 
of the single particle states. The mapping of the correlated pair configuration space onto the 
antisymmetric states allowed by Pauli principle is achieved using the particle antisymmetrizer. 
The procedure for determining the shell-model Hamiltonian matrix using the above basis is 
outlined. 

I. INTRODUCTION 

Extensive studies have been undertaken over the past 
few years regarding correlations between the phenomenolo
gical interacting boson models (lBM-I,2) and the shell
model approaches. 1-4 One of the most useful of such correla
tions relates to the use of pair-fermion states such as those 
which occur in broken pair approximation (BPA) meth
ods.5

,6 In these approaches correlated pairs of low angular 
momentum coupled correlated fermion states (J = 0,2) are 
sought to be related to the sand d bosons of IBM-I in case of 
identical even nucleon systems. In most cases Dyson map
ping approaches are used to obtain this correlation. 7

,8 It was 
shown in a recent paper9 that the action of a Dyson mapped 
Hamiltonian on Dyson mapped boson pair states was equiv
alent (operationally) to the action of a shell-model Hamilto
nian on determinantal products of single particle states. This 
equivalence was established using the shell-model I j,m) ba
sis. The main feature of IBM and BPA studies is the trunca
tion scheme on the shell-model configuration space based on 
the use of low angular momentum coupled pair stl,ltes to 
generate a physically significant subspace. In this context, 
the equivalence established using the I j,m) basis9 is not of 
much utility since a consistent truncation scheme is not pos
sible in this space. 

In the present paper we have attempted to develop a 
viable procedure for realizing bosonlike products of angular 
momentum coupled pair states of identical nucleons. A sim
ple method is suggested to obtain good angular momentum 
states of even nucleon systems. A truncation of the space 
leads us to consider pair states with J = 0,2. A procedure for 
antisymmetrizing these product states to satisfy the Pauli 
principle is also proposed. These methods are outlined in 
Sec. II and illustrated using suitable examples. A brief dis
cussion of the method is presented in Sec. III. 

II. ANGULAR MOMENTUM PROJECTED PAIR STATES 

Consider an ordered orthonormal set of single particle 
shell-model basis states spanning a linear vector space Vn , 

Vn:{Uama)la= 1, ... ,k;-ja<ma<ja;atl (2ja + 1) =n} 

(1) 

for a system of 2N identical nucleons. In the above set it is 
assumed that a < b implies ja > jb or, if ja = jb' ma > mb 
andinanyproductthestate Ija,ma ) precedes Ijb' mb) as 
read from left to right. Yn provides the carrier space for 
the fundamental representation of the unitary group U(n) 
with its Lie algebra defined by a set of n2 generators 
Eab (a,b = 1,2, ... ,n) satisfying 

[Eab,Ecd] = EadlJbc - EcblJad (2) 

and 

(3) 

Using the generators defined by Eqs. (2) and (3), it is possi
ble to express the shell-model Hamiltonian as lO 

. 1 
H = L EaEaa + - L L V(ab)(cd) (EacEbd -lJbcEad ), 

a 2 a<b c<d 
(4) 

where 

Y(ab)(cd) =! (Vab,cd - Vab,dc - Yba,cd + Vba,dc), (5) 

with 

Vab,cd = (jamajbmb 1V(1,2) Ijcmcjdmd)' (6) 

For a system of 2N identical particles, states allowed by the 
Pauli principle are the determinantal states spanning the 
representation [I 2NO] of the group U(n), 

(jlml"'j2Nm2N)=d (ljlml)"'U2Nm2N»)' (7) 

where d is the particle antisymmetrizer, 

d = (2N!) -1/2 L lJpP. (8) 
PeS2N 

There are only three distinct categories of nonzero matrix 
elements ofEq. (4) over the basis defined by Eq. (7). These 
are listed for convenience in the Appendix. The usual prob
lem with this approach is that the dimensionality of the 
space is too large and no consistent scheme of truncation is 
available on the configuration space. 

An alternative to the shell-model approach is to define a 
space of antisymmetric second rank tensors realized on 
Vn ®2 as 

Vm :{tPab = - tPba = (1/.J2)( Ijama) Ubmb) 

-Ubmb)ljama»)la<b= 1, ... ,n} , (9) 
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where Vm is the [m = n(n - 1}/2]-dimensional space 
spanned by standard Weyl tableaux (SWT) of the represen
tation [126] of U (n ). The single particle orbitals defining 
rPab are assumed ordered in the usual SWT scheme. It then 
follows that 

( 10) 

since a < b and c < d. For a system of N pairs of identical 
nucl .... ms, the procedures outlined in an earlier paper91ead to 
Nth rank antisymmetric product states, 

[(albl ) (a2b2 )' •• (aNbN)] 

= (~;:)")1/2 L 8p P( rPa,b, .. 'rPaIl'N)' (11) 
• PeS2NISN", (S,)N 

where ak = Ijakma)' bk = Ijbkmb) and ak #aJ' bk #bJ 
if k #1. In the above product, for a fixed index ak the index 
bk ranges over ak + 1 <bk <n - 2N + 2 so that the number 
of independent configurations as in Eq. (7) for this value of 
a k is (~N ~ 2 I ) since no index is to occur more than once in a 
product. The total number of configurations is thus 

n - f + I k (n - k - 1) = ( n ). 
k=1 2N-2 2N 

(12) 

Thus the correspondence between configurations of pair 
states ofEq. (9) and the standard shell-model configuration 
space [1 2N 6] is one-to-one. That the correspondence is iso
metric follows using the steps outlined in the earlier paper9 

as 

[(albl ) (a2b2 )'" (aNbN)] 

= d (lal)lbl)la2)lb2)"'laN)lbN»' (13) 

Thus it is quite apparent at this stage that nothing is to be 
gained using the pair basis states of Eq. (9) in preference to 
the shell-model basis. No simple and consistent prescription 
is evident at this stage for truncating the configuration space. 
This leads us to define an alternative basis set on V m in terms 
of angular momentum coupled pair states as 

(14) 

where f./, = (ja,jb) and (jama, jbmb If./,jm) are Clebsch
Gordan coefficients (CGC) of 0 ( 3 ). If j a = j b, a slight 
modification is to be made on the right-hand side ofEq. (14) 
with 

L -Ii L 
mQ.mb mg,mb(ma>mb) 

This occurs since the rP ab are SWT basis states. We note that 
just as the rP ab provide a basis on V m' the rP ,..jm lead to an 
alternative basis on the space. Based on the earlier analysis,9 
we note that V m is the fundamental representation space of a 
unitary group U (m) whose Lie algebra is defined by a set of 
m2 generators E(ab)(cd) (a<b, c<d= 1, ... ,n). The set of 
states 

{rP,..Jmlf./,=(ja,jb); Ija -jbl<j<(ja +jb); -j<m<j} 

defines an equivalent orthonormal basis on V m , 

(15) . 

and can be used to provide a representation of U (m). The 
unitary transformations of Eq. (14) enable us to define an 
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equivalent set of shift operators on Vm, E"'Jm;p'lm" which are 
generators of the Lie algebra of U (m) satisfying 

[ E"'im;p'lm" E,..-rm-;p-rm- ] 

= E,..im;,..-rm-8,..,,..-8lr8m'm-

- E,..-rm-; "''lm,8,..,..-8j/"8mm-, 

and 

E ,..jm; ,..'lm' = E,..'lm';Pim' 
where 

E,..im;,..j'm' = L (jamajbmb If./,jm) 

(16) 

(17) 

Xl .. ", '1" ,., ')E (18) 'J-"l m lama lbmb (,..mamb);(,..'m;m;') . 
We now introduce an ordering in the index set rP,..jm byas
suming that in any tensor product, the states withj (f./, rang
ing) precede those withj' (f./,' ranging) ifj>j'. Ifj = j', states 
of a given m precede those with an m' if m > m' as read from 
left to right. Among the states in a product with a givenj, 
those having f./, = (j a ,j b) precede those with f./,' = (j~, ji, ) 
ifja > j~ or ifja = j~ providedjb > ji,. Given such an order
ing, we now consider a set of primitive N th rank tensor prod-

N 

ucts of rP ,..im spanning V m ® as 

Vm ;: {(rP,..,i,m,>N'''·(rP,..mimmm)Nml 

N>NI ,N2" .. ,Nm>0; atl Na =N}, (19) 

where the first NI pair states are associated with particle pair 
indices (1,2), (3,4), ... , (2NI - 1, 2NI), thenextN2 pairs are 
associated with the indices (2NI + 1, 2NI + 2), ... , 
(2NI + 2N2 - 1, 2NI + 2N2 ) and so on. The tensor basis set 

N 

spanning V m ® provides an alternate Nth rank basis for 
N 

U (n) ® . A reduction of this space into irreducible subspaces 
of U (m) stable under the generators defined by Eqs. (16)
(18) follows readily on using symmetrized Wigner opera
tors of the appropriate permutation group as outlined in ear
lier studies. 11 The permutation group of relevance in the 
present context is S N defined on pairs of particles. Since we 
are interested in bosonlike products of pair states, rP ,..i"'.' we 
need only consider the symmetric representation [N, 0] of 
U (m), we can readily generate the SWT spanning this repre
sentation as 

[(rP,..,j,m, )N'(rP"',i2m, )N2 ... (rP"'mimmm )Nm] 

= [N! J( Na!f/2 

X L P [rP"',J,m,>N'(rP"',hm,>N, ... (rP"'mjmmm )Nm], 
PeSN 

(20) 
where each PES N is a permutation defined over particle pair 
indices (20 - 1,20) with a = 1, ... , N. 

Good angular momentum projected states for the N
pair system result, on using the restriction U (m H 0 ( 3 ), in 
the rotation subgroup ofthe unitary group. Instead of using 
the recoupling algebra for this purposel 2 we will use the 
more direct procedure based on subducing the algebra of 
0(3) from the parent group. For any such restriction, the 
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procedure is straightforward 10,13 and follows the chain 
U(m) :JO(m) :J0(3) for integer angular momenta and 
leads to 

i-I 
J + = I I [(j - m)( j + m + 1) ] 1/2 

I-'i m=O 

X (EI-'Jm+ I;I-'Jm El-'i-m;f.Li-m-I)' (21) 
j-I 

J-=I I [(j-m)(j+m+l)p12 
I-'i m=O 

(22) 
J 

jo= I I m(EI-'Jm;I-'Jm -EI-'J-m;f.LJ-m)· (23) 
I-'J m=O 

Using the commutation relations of Eq. (16), it is easy to 
verify that J ± and Jo satisfy the usual angular momentum 
commutation relations. The standard procedure for the sub
group adaptation U (m ) ~ 0 ( 3) follows on starting with a set 
of SWT spanning [1 N 6] corresponding to a given total M 
value and defining a linear combination of these states. If this 
linear combination corresponds to a total J value, J = M, 
then application of J + ofEq. (21) to it annihilates it. If the 
givenJis multiplicity-free in U(m) ~0(3), we obtain a suffi
cient set of equations to determine the state uniquely to with
in a normalization factor. If multiplicity is present, the linear 
combination is resolved in an arbitrary but reasonably con
sistent manner. Instead of carrying through this scheme for 
general J and M, we consider briefly the truncation schemes 
as in IBM-l 1.2 or correlated BPA approach.4-6 A prelimi
nary step in this type of study is to define correlated pair 
functions as 

ifJ;}m = IAI£}mifJl-'}m' 
I-' 

(24) 

where the AI-'Jm are variation coefficients which are as yet 
undetermined. The truncation scheme consists now of re
stricting ourselves to relatively low angular momentum 
states among those defined by Eq. (24). In the simplest ver
sion of this scheme, it is assumed that only correlated pair 
states withj = 0, 2 are important in the N-pair configuration 
space. This and the result of Eq. (24), in turn, imply that 
only pair states ifJl-'Jm withj = 0, 2 nee~ be considered in gen
erating the configuration space of [ 1 NO] spanned by SWT of 
Eq. (20). This leads to a subspace of Vm of considerably 
reduced dimensionality than n (n - 1) 12. Thus for the sub
shells j =~, ~, ~, ! we find that V m is of 190 dimensions 
whereas the truncated subspace as above is of 44 dimensions. 

Equation (24) implies that the configuration space of 
correlated pair states is a linear combination ofSWT defined 
by Eq. (20) with individualja (a = 1, ... ,m) being restricted 
to values 0 or 2 insofar as the subspace is concerned. In deal
ing with this restricted configuration space we first assume 
that all the pairs of particles are distributed in just a pair of 
single particle levels characterized by a fixed}l value. If we 
further assume thatja = 0 for all N pairs of a given configu
ration, the only angular momentum projected state possible 
is J = M = 0, so that 

(25) 
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where the right-hand side ofEq. (25) is an SWT correspond
ing to the Nth rank tensor product of ifJI£OO' As a general
ization of this result, consider again a fixed }l value 
andj\ =j2 = .,. =jp =O,jp+l =jp+2 ='" =jp+q = 2, 
where p + q = N. The highest weight SWT corresponding to 
this distribution is one with m) = m 2 = ... = mp = 0, 
m p+ 1 =mp+2 = ... =mp+ q =2. It is also the highest 
weight state of 0(3) correspondingtoJ =M = 2q. Forno
tational convenience we represent this SWT as 

(p q 0 0 0 0) [(ifJl-'oo)P ( ifJI-'22 )q], (26) 

where the left-hand side shows that m = Oisp-fold occupied, 
m = 2 is q-fold occupied, and m = 1, 0, - I, - 2 are all 
unoccupied with these values being read from left to right, 
respectively. SWT's of lower M value follow successively 
from Eq. (26) by decreasing by unity the entries starting 
with q and increasing by the same amount to the immediate 
right position. Thus, for example, 

N = 2q - 1: (p q - 1 1000), 

M = 2q - 2: (p q - 10100), (p q - 2 2000), 

etc. A simple procedure has been worked out for listing all 
the SWT corresponding to a given M value in dictionary 
ordering for any given p and q. As an illustration let p = 3 
and q 4. The SWT's corresponding to this distribution are 

(330001), (32 1 0 10), (320200), (3 1 2 100), 
(304000). 

For a given value of M, let S represent the set ofSWT's where 

S: {(pq)=(pqlq2q3q4qS)lqi">0 Vi; ± qi=q; 
i 1 

± miqj = M; m l = 2, ... ,ms = - 2}. 
i= 1 

Using this set, we define a linear combination as 

(27) 

I [(}l0)P(}l2)9]; M) = I A(pq)l(Pq», (28) 
(pq)eS 

where A (pq) are as yet undetermined coefficients. Applying 
J+ ofEq. (21) to both sides ofEq. (28) and equating the 
coefficients of resulting linearly independent SWT, 
(pq) = (p qj qi q; q4 q; ), to zero we can determine the state 
corresponding to J, M = J. As an illustration of this proce
dure, consider p = 3, q = 4, and J = M = 4. The SWT cor
responding to this case have been listed earlier. Using these 
and setting up the linear combination as in Eq. (28), apply
ing J + to this combination, and equating the result to zero, 
the following relations among the coefficients are obtained; 

A2 = (1/~)Al' 

A4 = (1/2../2>A 1 - (~/2)A3' 

As = - (3/8)A 1 + (3~/4.J2)A3' 
where the basis states listed earlier have been numbered 1 to 
5 in the dictionary ordering. Choosing As = 0 leads to 

A2 = (1/~)AI' A3 = (l/..j6)A 1, A4 = 0, 

so that 
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1£(p0)3(P2)4]; 44)(1) 

=~[.J6(330001) 

+ ../2(3 2 1 0 1 0) + (320200)]. (29) 

The second of this pair of doubly occurring states results on 
orthogonalizing the general linear combination to this state, 
yielding 

.,f6A 1 +..[2A2 +A3 = 0, 

so that the second normalized state is 

I «jLO)3(jL2)4J; 44)(2) 

= (1/3~7) (s./3(3 3 0001) + 8(3 21010) 

- 32../2(3 20200) -18../2(3 12100) 

- 27~(3 04000)]. (30) 

The analysis of fixed jL-angular momentum projected states 
enables us to generalize to states which have distributions 
spread over various jL values. Let the single particle shell 
model basis span the set oflevelsj I>j2,. .. j k' This leads to a set 
of k( k + 1) /2 pair state levels (j a j b )j a ;;.j b' This general
ization to multilevel distribution follows readily on defining 
a shift operator, 

(31) 

where only those I are considered that satisfy 
(j~ - jb ) <J' <J~ + jb for a given jL' and similarly for jL". It 
can be readily verified that EI''!;P")" commutes with I ± and 
100fEqs. (21)-(23), 

(32) 

where 5 = ±, o. The utility of the operator defined by Eq. 
(31) follows if we consider the fixed jL configuration of Eq. 
(28). Applying I + to it and equating the result to zero leads 
to a determination of the coefficients A (pq) so that we obtain 
the angular momentum projected state as 

l[(jLO)P(jL2)q]; JJ) 

- '" A (J) - £." (pq) 
(pq)eS 

X [ (l)9pOO )P( 1)91'22 )q,( 1)91'21 )Q2' .. (1)91'2 2 )q.]. (33) 

The procedure used to determine A l~) is similar to the one 
outlined in the example. By construction we therefore have 
the result 

(34) 

Using the commutation relation ofEq. (32), we note that 

I +EI"I;p/1 [(jLO)P(jL2)Q]; JI) 

= EI',!;W'J+I [(jLO)P(jL2)Q]; JJ) =0. (35) 

This result implies that the application of EI"o-,pO and EI"2;P2 
to Eq. (33) leads to the states 

I [(jLO)P-1(jL'0)(jL2)Q]; JJ) 

and 
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respectively. As illustrations, the corresponding states are 
listed below: 

I [(jLO)P- 1 (jL'0)(jL2)Q] ; JJ) 

and 

1£ (jLO)P(jL2)Q-I(jL'2)]; JJ) 

= ~ L A~pq) ±~[(l)9pOO)P(1)91'2mf'-ll)9p'2m, 
"q (pq)eS i = 1 

S 

X II (1)91'2mk)Q\ (37) 
k=1 
(k ",1) 

where mt> mk = 2,1,0, - 1, - 2, for i,k = 1,2,3,4,5, respec
tively. Repeating this process for di1ferent EI',!;p."r 
(I = 0,2), the entire multishell configuration space adapted 
to a total J, M = J can be generated successively if A ~pq) are 
known for a single shell distribution. This procedure thus 
enables us to obtain all the configurations of an N-pair sys
tem occurring in a given correlated pair configuration dis
tributed over s- and d-type correlated pair states ofEq. (24). 

The procedure developed above is not complete since 
the effect of the Pauli principle on the projected configura
tions has not been considered. Since the Hamiltonian opera
tor ofEq. (4) is defined in terms shift operators over V"' we 
have found it convenient to transform the angular momen
tum projected basis states defined as polynomials of I)9pJm 
into the uncoupled (jama,jbmb) form. The effect of the 
particle antisymmetrizer on these product states is to annihi
late any product state of the Ijama) basis in which any index 
is repeated and introduce a phase factor {jp in obtaining the 
SWT spanning [1 2N 6] of U (n ). Collecting the coefficients 
of independent SWT of this type occurring in angular mo
mentum projected configuration space basis states, we incor
porate the Pauli principle in the formulation. As an illustra
tion of this procedure we present the case of a three-pair 
system in the singlej = ~ subshell. Here jL == 1 = (~,~) and let 
us consider the projected state corresponding to J = M = O. 
Let all pairs haveja = 2 so that the relevant pair states are 

1)9122 = (l/J4'2) [;71)916 - ../fSl)9zs + 2~1)934], 
1)9121 = (1/J4'2) [..JfiI)917 - 41)626 + ~1)93S]' 
1)9120 = (1/.J84) [71)918 -1)927 - 31)936 + 51)94S]' (38) 

1)912-1 = ( - 1/J4'2) [..JfiI)928 - 41)631 + ~1)946], 
1)912-2 = (1/J4'2) [;71)938 - ../fS1)947 + 2~I)9S6], 

where on the right-hand side in single particle labels 
i = 1, ... ,8 have been used to represent ma = ~, ... , - ~. Using 
these in the projected state, 

1[( 1)912)3]; 0,0) 

= (1/.JB)2~[ 1)91221)9120/)612-2] 

-3[1)9122(1)912_1)2] -3[(1)9121)21)912_z] 

- ~[1)91211)9120/)612-1 J -../2[ ( 1)9120)3], (39) 

and antisymmetrizing and renormalizing the state we obtain 

Sheikh, Sita, and Sanna 754 



                                                                                                                                    

the result 

..rat I [( (,612)3]; 0,0) =!..rat{ - (123678) + (124578) 

- (1 34568) + (23456 7)}, 
(40) 

I 

1[( (,612)2{,622]; 0,0) 

where the single particle orbitals have been reordered to 
yield the respective SWT's. Ifj b = ~ is another level available 
for the system, let i = 9,10,11,12,13,14 label its mb =~, 
M, -!, -~, - ~ values, respectively. Representing (M) by 
J.t = 2, the application of E 22;12 to both Eq. (39) yields 

= (1/~)~[ {,6122{,6l2o¢22 -2] + 2[ {,6122{,622o¢I2-2] + 2 [{,6222{,6120{,612 -2] - ~[{,6122{,612-1{,622-1 ] 
-v'3[{,6222({,612_1)2] -v'3[({,6121)2{,622_d -~[{,6221{,6121{,612-2] - [{,6121{,612o¢22-1] 

- [{,6121{,622o¢I2 - I] - [{,6221{,6120{,612-1 ] - ~[( {,6 120) 2{,6220] . (41 ) 

The additional pair states required for the above state are 

{,6222 = (1/3~) [~{,61 13 - 2..Jl0¢2 12 + ,[30¢3 II - 4(,6410 + ${,659]' 

(,6221 = (1/~) [5..fj{,61 14 - ${,62 13 - ,[30¢3 12 + 7..{2l,64 II - 11{,65 10 + 5v'3{,669]' 

{,6220 = (1/2~) [5{,62 14 - .jf5{,63 13 + ..{2l,64 12 + ..{2l,65 II - .jf5{,66 10 + 5{,679], (42) 

(,622 - I = - (1/~) [5..fj{,689 - ${,67 10 - ,[30¢6 II + 7~{,65 12 - 11{,64 13 + 5v'3{,63 14]' 

(,622 - 2 = (1/3~) [~{,68 10 - 2..Jl0¢7 II + ,[30¢6 12 - 4(,65 13 + ${,64 14], 

whereJ.t = 2 has been used to represent (~, ~) in the above. Using these and the pair statesofEq. (38) in the projected state of 
Eq. (41) and proceeding as in Eq. (40) we obtain the normalized state as 

1'1') = - 0.1376(12368 14) + 0.2132(12378 13) + 0.1376(12458 14) + 0.094(12467 14) - 0.112(12468 13) 

- 0.1557(12478 12) - 0.1682(12567 13) + 0.3146(12568 12) - 0.1557 (12578 11) + 0.2132(12678 10) 

-0.2102(1345714) +0.0355(1345813) +0.2185(1346713) -0.1168(1346812) +0.3146(1347811) 

-0.1030(1356712) -0.1168(1356811) -0.1112(1357810) -0.1376(136789) +0.1330(1456711) 

+ 0.0355(1456810) + 0.1376(145789) + 0.2752(2345614) - 0.1777(2345713) + 0.1330(2345812) 

+ 0.0389(2346712) - 0.1030(2346811) - 0.1682(2347810) + 0.0389(2356711) + 0.2185(2356810) 

+ 0.094(235789) - 0.1777(2456710) - 0.2102(245689) + 0.2752(345679). (43) 

A similar approach can be used to obtain the remaining 
states 

..rat I [({,6)2) ({,622)2]; 00) and ..rat 1[( (,622)3]; 00) 

of this two-level system as linear combinations of Slater de
terminantal states as in Eqs. (40) and (43). The results of 
the Appendix enable us to generate the Hamiltonian matrix 
elements for each of these defining determinantal states. 
Weighting these matrix elements with the coefficients with 
which the corresponding determinantal states occur in the 
antisymmetrized angular momentum projected configura
tions, we can obtain the Hamiltonian matrix in terms of 
these states. A program is at present being developed for 
implementing the procedure for a general multilevel system 
of N pairs of identical nucleons. In this program we carry out 
a linear variation procedure and extract the relevant correla
tion parameters of Eq. (24) by a least squares method. 

III. DISCUSSION 

The most tedious aspect of the procedure outlined in 
Sec. II occurs in antisymmetrizing the projected n-pair states 
and expressing these as linear combination of single particle 
determinantal states. This is evident from an examination of 
Eqs. (40) and (43). A further complication is the need to 
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use the results of the Appendix repeatedly in obtaining the 
matrix elements of the shell-model Hamiltonian by match
ing each determinant of the ket state with a similar determi
nant in the bra vector. We are unable to suggest any simple 
alternative to this at present. We have, however, reduced the 
problem to one of bookkeeping by assigning a simple num
bering system to the determinantal states. In spite of this 
difficulty, the present procedure is simpler to implement 
than, say, the Dyson boson mapping methods7- 9 with their 
attendant non-Hermiticity problems. An advantage of the 
present approach is that it lends itself readily to a generaliza
tion to correlated pairs other than those withj = 0 and 2. A 
point to be noted in using the shift operator EJ.I-'J;por to gener
ate multilevel configurations is that it only generates those 
configurations which have their origin in the single level 
state 

I [(J.tjl)N1 (J.tj2)N2 ···(J.tjd Nk ]; JM). 

Thus, for example, states such as 

1[( (,612)2{,622]; 55) 

= (1/v'3){~[( {,6122)2{,6221] - [{,6122{,6222{,6121]}' (44) 

do not appear in the configuration space. That this is a natu
ral consequence of using the correlated pair formulation as 
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in IBM or BPA approaches follows readily. The s- and d
type correlated pair status resulting from Eq.- (24) are 

(45) 

¢;2m = L bp.·¢p.·2m (m = 2,1,0, - 1, - 2). (46) 
p.' 

The angular momentum projected states obtained from 
these are 

1[( ¢;o)p( ¢;2)q]; JM) 

(47) 

whereA t~'~~m2 ..... 2m. are coefficients determined as in Sec. II. 
Using the expansions of Eqs. (45) and (46) in the right
hand side of Eq. (47), we obtain 

" A (JM) "a a . "a b b [¢ j, ••• j, ••• j, j, j, ••• j, ] 
£.. 2m.,2m2, .. ·,2mq k JI-. iJ.l J.lp 1'1 pi J.l.OO'f'p.lD 'f'J.lpC1J 'f'p,pOO'f' ",,2m, Y'l'i2m2 'f' J.'~mq • 

m1,m29 .•. ,mq Pt,JJ.2'···'l'p 
= (48) 

On examining this result we find that the left-hand side is 
symmetrical under the permutations of the first p pair state 
indices amongst themselves as also the last q indices. This 
symmetry has to appear on the right-hand side also. The pair 
functions on the right-hand side carry the triad of indices 
P.iOO andp.Qm,· Thus only configurations reflecting this sym
metry appear in using correlated pair formulation and not 
general configurations as in the example given in Eq. (44). 
In fact, if we let p. = 2 ..... P. = 1 this state vanishes on using 
the renormalization necessary for [¢122¢222¢121] 
..... [( ¢122)2¢121]' This result permits us to use the shift oper
ator Ep.'1;p."r in going from a single- to a multilevel configura
tion, since it is a symmetric replacement operator. 

We are at present concentrating on two aspects of the 
present approach. A viable program is being developed using 
relatively simple two-body interactions which would mini
mize the computer storage problems. A second aspect of the 
problem under study is to generalize the approach so that we 
can handle the configuration space of a proton-neutron sys
tem. This would require the restriction of the symmetric rep
resentation ofU (m 1 + m2 ) to the products of the symmetric 
representations ofU(m1 ) XU(m2)' where ml and m2 refer 
to the pair spaces of the proton and neutron pairs, respective
ly. Computationally this problem is bound to be more formi
dable than the one we are trying to implement at present. 
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APPENDIX: 

Three categories of nonzero matrix elements are possi
ble for the Hamiltonian ofEq. (4) over single determinantal 
states of single particle orbitals. The forms of these matrix 
elements can be readily established by specializing the re
sults of an earlier study14 to single column SWT spanning 
[ 12N 6] of U (n). These results are summarized in this Ap
pendix. 
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For notational convenience we represent the determin
antal states ofEq. (7) as 

(N1N2 " 'Nn) = d (ION. 12)N2" ·In)Nn). (Al) 

where the Nk (k = 1, .... n) have the possible values 0 or 1 
subject to l:Z = INk = 2N. The required matrix elements are 
of the form 

H(N')(N) =«N;Ni "'N~)IHI(NIN2"'Nn»' (A2) 

The following cases occur. 
(i) Zero-excitations: In this case N k = Nk for all k 

from 1 to n, and 
n 

H(N)(N) = L N;E, + L Nk V(lk)(lk)' (A3) 
;=1 k 

(k>/) 

(ii) One-excitations: In this caseN k = Nk for all k #-a, 
band N; = 1. N;' = O. Na = 0, Nb = 1. The required re
sultis 

n 

H(N')(N) = L N; V(la)(ib) lip, 
;=1 

(A4) 

where lip is the signature of the permutation p matching the 
location of the index b of the ket vector with that of a of the 
bra vector. 

(iii) Two-excitations: InthiscaseN k = Nk for all k #-a, 
b,c,d,and 

N; =N't, = 1, N; =Nd =0; 

Na =Nb =0, Ne =Nd = 1. 

This yields 

H(N')(N) = V(ab)(ed)lip' (A5) 

where p is the permutation which matches the pair of indices 
c, d of the ket vector with a and b of the bra vector. 
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The structure of unitary irreducible representations of the Lie superalgebra Osp (2,4), the 
algebra of N = 2 extended supergravity, is investigated in detail. In particular, four new classes 
of shortened multiplets are found, and the complete unitarity conditions are given. The 
shortened multiplets are shown to correspond to atypical infinite-dimensional representations. 
Finally, unitarity conditions for Osp(N,4), 3<N<8, are constructed. 

I. INTRODUCTION 

Lie superalgebras play an important role in physics, 
since they are the mathematical foundation of supergravity 
theories. A complete classification of all simple Lie superal
gebras over the complex numbers has been given by Kac. 1 

Moreover, some general theory on finite-dimensional irre
ducible representations (irreps) of classical Lie superalge
bras has been developed.2 

The relevant Lie superalgebra for N-extended supergra
vity (with anti-de Sitter space-time) is Osp (N,4 ). Represen
tations ofOsp(N,4) have been studied by various authors. 3-5 

Here, it is the infinite-dimensional representations that are of 
importance, since they describe particles in supersymmetric 
field theories. A complete classification of unitary irreduci
ble representations of Osp(N,4) (with lowest energy, or 
with lowest weight) has been obtained only for N = 1 (see 
Refs. 6 and 7). For N., 2, partial results have been obtained, 
especially with respect to unitarity conditions. Moreover, 
the phenomenon of multiplet shortening has already been 
observed. 3.4 

The work presented in this paper is mainly mathemat
ical. We shall first study the unitary irreducible representa
tions of Osp(2,4). Some of the irreps of Osp(2,4) have al
ready been classified by Ceresole et al.s Here, we obtain the 
general structure of an unshortened Osp(2,4) irrep, and 
moreover, we discuss four types of shortened multiplets. A 
unitary irrep ofOsp(2,4) is labeled by its lowest energy Eo, 
together with the corresponding spin sand hypercharge Yo' 
We prove that the unitarity conditions are equivalent with 

Eo" iyoi + s + 1. (1.1) 

In general, a unitary irrep of Osp (2,4) decomposes in 16 
irreps of the even subalgebra SO(3,2) XU( 1) (unshortened 
case). If Eo = ±Yo + s + 1 or Eo = ±Yo - s, we prove 
that the representation is shortened and decomposes in only 
eight subalgebra irreps. Then, it is quite easy to see that the 
shortened multiplets of the Lie superalgebra are an infinite
dimensional version of the so-called atypical representa
tions2 in the study of finite-dimensional irreps. As a conse
quence, also the unitarity conditions can be deduced from 
atypicality relations. This is what we have performed for the 
Lie superalgebras Osp(N,4), with 3<N<8. These unitarity 

a) Research assistant NFWO (Belgium). 

conditions are in general simpler than the ones for Osp (2,4), 
since Osp(2,4) is a Lie superalgebra of type I. 

The structure of the paper is as follows: in Sec. II the 
algebra for Osp (2,4) is given in terms of the usual 
SO(3,2) XU(1) generatorsMAB and Ti2, and the eight Ma
jorana spinor charges. Our main technique is that we work, 
throughout the whole of the paper, in the multiplicity-free 
basis for SO(3,2). This means that basis states are in first 
instance not described in the chain SO(3,2) 
::J U ( 1) X SU (2), with U (1) giving the energy label and 
SU(2) the spin label, but they are described in the chain 
SO(3,2) ::JSU(1,1) xSU(1,I). In the latter chain, basis 
states of SO(3,2) are uniquely determined by the 
SU (1,1) X SU (1,1) labels. Hence calculations are much 
easier in this basis. Moreover, since we are finally only inter
ested in the SO(3,2) X U( 1) contents of an Osp(2,4) irrep, 
the internal labeling ofSO(3,2) plays no role. Therefore we 
go over to a new basis for Osp(2,4), in which the subalgebra 
SU (1,1) X SU (1,1) xU (1) is apparent. Also, the new 
(anti)commutation relations in this basis are given in Sec. 
II. In Sec. III, the structure of unitary irreps of Osp (2,4) is 
investigated. Part of this section is rather technical; making 
use of the explicit expression of the second-order Casimir 
operator C2 of Osp (2,4), some relevant matrix elements of 
the odd generators are deduced. Also, four types of short
ened irreps arise. Section IV deals with the relation between 
shortened multiplets and atypical representations of the Lie 
superalgebra. This relation is extended to Osp(N,4) 
(3<N<8) in Sec. V, where the unitarity conditions are list
ed. 

II. THE Osp(2,4) SUPERALGEBRA 

The even part of the algebra ofOsp(2,4) is spanned by 
ten Hermitian SO(3,2) generators MAB = -MBA' where 
A,B = 0,1,2,3,4, and by a single Hermitian SO(2) generator 
TV = - Tji (i,j = 1,2). The commutation relations are de
scribed by3.4 

[MAB,McD ] = i(rJBCMAD - rJAcMBD 

- rJBDMAC + rJADMBC )' 

rJAB = diag(1, - 1, - I, - 1,1); (2.1) 

[T 12,MAB ] = o. (2.2) 
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The odd elements of the Lie superalgebra are eight Majorana 
spinor charges Q~ (i = 1,2), where a = 1, ... ,4 is a Dirac in
dex, which satisfy the anticommutation relations 

{Q~,Q~} = ic5Y(/AB)aj1MAB + ic5aj1TIJ. (2.3) 

The matrices I AB are defined in Ref. 4. The Majorana spinors 
are usually parametrized as 

Q~=C:~~)' E=(~l ~). (2.4) 

where 

(a~)t=a~. (2.5) 

It is well known thatM04 represents the energy operator, and 
that My = ElJkJk form the generators of a compact SU(2) 
subalgebra describing the spin. Moreover, T 12 can be inter
preted as the hypercharge operator. For the remaining com
mutation relations between even elements and odd elements, 
we refer to Ref. 4. 

For our purposes, it will be useful to describe the 
SO(3,2) subalgebra in a multiplicity-free basis. As a conse
quence, irreps ofSO(3,2) are not decomposed according to 
the compact energy-spin subalgebra U (1 ) X SU (2), in 
which chain there is a degeneracy problem. but they are de
composed in a noncompact SU ( 1,1) X SU ( 1,1) basis. There 
is no labeling problem in SO(3,2) ~SU(1,l) xSU(l,l), 
and hence it makes the analysis ofSO(3,2) irreps, and even
tually ofOsp(2,4) irreps, much easier. On the other hand, it 
is fairly easy to transfer the results obtained in this noncom
pact basis. to the basis with the physical energy-spin labels,8.9 
as we shall perform in Sec. III. 

The new SO(3,2) basis consists of the 
SUO, I) XSU(l,l) generatorspo,P ± andqo,q ±' and of the 
components of a four-dimensional tensor Rij (i,j = ±!) 
with respect to SU ( 1,1 ) X SU ( 1,1 ). The connection between 
the new basis elements and the M AB generators is given by 

Po = !(M04 + M I2 ), P+ = !(lMol - Ml4 - M02 - iM24 ) , 

P _ = !(iMOI + MI4 + M02 - iM24 ); 

qo = !(M04 - M I2 ), 

q+ = !(iMoJ - M14 + M02 + iM24 ) , 

q_ = !(iMol + Ml4 - M02 + iM24 ); 

R(l/2)(I/2) = - (lIJi)(M03 + iM34 ) , 

R (112) _ (112) = (l/Ji) ( - M03 + iM34 ) , 

R(l12) _ (112) = (lIJi)(M31 - iM23 ). 

R (112)(1/2) = (lIJi) (M31 + iM23 )· 

We also introduce the notation 

Y=T I2. 

(2.6) 

(2.7) 

Then, the hermiticity conditions. in the new basis, read 

P6 =Po, pt± = -P=f' q6 =qo. (2.8) 
qt - _ q R t - R yt - Y. ± - =f' IJ - -i-j. -. 

and the nonvanishing commutator relations are given by 

759 J. Math. Phys., Vol. 28, NO.4, April 1987 

[PotP±] = ±P±' [p+,p-] =2po, 

[90,9±] = ±q±, [9+,q-] ='2t/o, 

[Po,Rij] = fRij, [qo,Rij] = jRij' 

[p ± ,R =f Il2j] = R ± (I/2li' 

[q± ,Ri=f(l/2)] =Ri ±(II2)' 

[R(II2) ± (1/2) ,R - (112)'1'(112)] = =FPo - qo, 

[R± (112)(1/2),R ± (112) (1I2)J= ±P±' 

[ROI2) ± (I /2pR - (112) ± (112) ] = ± q ± . 

(2.9) 

The odd basis elements of Osp( 2,4) are given in terms of the 
(-) 

components a ~ of the Majorana spinors: 

Q(l/2)0 = (i/2)(al + i aU. Q(lI2)O = (i/2)(al - i ai). 

Q-(I/2)0 = (iI2)(al +iai), Q-(t/2)0 = (iI2)(al-iaD, 

QO(l/2) =!(a~ +iaD, QO(1I2) =!(a~ -ia;). (2.10) 

QO-(1I2l = -!(a~ +ia~), 
- 1 ·2 QO-O/2) = -~(a2 -la2 )· 

The basis elements Qij (resp. Qij) form a four-dimensional 
tensor representation of the SO(3,2) algebra. They satisfy 

QL = - Q -i-j' (iJ) = ( ± !,O) or (0, ± ~). (2.11) 

The commutation relations between the SU ( 1,1) X SU ( 1,1) 
(-) 

generators and the odd basis elements Q ij are given by 

[ (-)] (-) [ (-) ] 
Po,Q IJ =iQ IJ' P± ,Q 0±1/2 =0, 

(2.12) 

[ (-) ] (-) 

P ± ,Q =f (l12}0 = Q ± (1/2)0' 

[ (-)] and analogous expressions for q, Q . The relations (2.13) 

express that Qij (resp. Qij) raises (resp, lowers) the hyper
charge by one unit: 

(2.13) 

The remaining commutation relations between even and odd 
basis elements are summarized by 

[R(l/2)±(1/2»Q-(1I2)0] = (lIJi)Qo±(1/2)' 

[R_(l/2)±(I/2),Q(I/2)o] = - (lIJi)Qo±ol2)' 

[R±(I/2)(1/2»Qo_(II2)] = (lIJi)Q±(1I2)O' (2.14) 

[R ± (l12) - (1/2) ,QO(1I2) ] = - (lIJi)Q ± (112)0' 

and the same relations with Q replaced by Q. 
Finally, the anticommutation relations among the odd 

elements need to be determined. One finds 

{Qo± (112) ,Qo± (112)} = ± q ± ' 

{Q ± (I/2)o.Q ± (112)0} = ±P ± ' 

{QOl'Qo} = (l/Ji)Rij' 

{Qo,QOj} = (l/Ji)Rij (i,j = ±!), 
{Qo± (112) ,Qo'f (1I2)} = - qo ± ~y, 
{Q ± (l12)O,Q'f (1I2)0} = -Po ± ~y. 

(2.15) 

The Lie superalgebra of Osp(2,4) is now completely deter-

Joris Van der Jeugt 759 



                                                                                                                                    

mined by (2.9) and (2.12)-(2.15). Then, one can easily 
calculate the second-order Casimir operator C2 ofOsp(2,4): 

2 - -
C2 = 12 + Y -!y + Q(iIZ)oQ - (IIZ)O - Q - (i/2)oQ(iIZ)O 

+ QO(IIZ)QO-(IIZ) -Qo-(IIZ)QO(IIZ)' (2.16) 

Herein, 12 is the quadratic Casimir operator of the even sub
algebra SO(3,2): 

12 = R(lIz) - (ilz)R - (lIZ)(1/2) - R(IIZ)(l/2)R - (112) - (1/2) 

III. STRUCTURE OF UNITARY IRREDUCIBLE 
REPRESENTATIONS OF Osp(2,4) WITH LOWEST 
ENERGY 

(2.17) 

Unitary irreducible representations of Osp(2,4), with 
the Hermiticity relations (2.8) and (2.11), are infinite di
mensional. We shall describe the structure of such irreps by 
giving their decomposition into irreps of the even subalgebra 
SO(3,2) XU( 1). For representations ofOsp(2,4) with low
est energy, the energy operator M04 ofSO(3,2) is bounded 
from below. The structure of such SO(3,2) irreps is well 
known,3.9 and they can be labeled by (E,j), where E is the 
minimum energy value, andj the corresponding spin quan
tum number. The labels (E,j) are the natural quantum 
numbers in the chain SO(3,2) ~SU(2) xU(1). Alterna
tively, the same SO(3,2) irrep can be labeled by a couple of 
numbers (jj,q), where p is the lowest Po eigenvalue, and q the 
corresponding qo eigenvalue, in the chain SO(3,2) 
~ SU ( 1,1 ) X SU ( 1,1 ). The relation between the two sets of 
labels reads 

2p=E-j, 2q=E+j. (3.1 ) 

In fact, (p,q) is the lowest weight if {Po,qo} is taken as the 
Cartan subalgebra ofSO(3,2), whereas (E, - j) is the low
est weight if {M04,M1Z} is chosen as the Cartan subalgebra. 
Let y be the eigenvalue of the U ( 1) operator Y, then a repre
sentation of Osp(2,4) is characterized by listing the 
SO(3,2)XU(1) irreps (E,j,y) or (p,q,y) in which it de
composes. 

The Lie superalgebra of Osp(2,4) contains four odd 
positive roots, and hence an irreducible representation of 
Osp (2,4) consist of at most 24 = 16 irreps of the even part 
SO (3,2) xU (1 ). This fact follows immediately from the 
structure of the enveloping algebra of Osp (2,4). Also, the 16 
subalgebra irreps in which a representation of Osp (2,4) de
composes are easy to find. Let Eo be the lowest energy value, 
s be the correspondingj value, and Yo be the hypercharge of 
the irrep (Eo,s). Then the Osp(2,4) representation can be 
labeled by (Eo;s;,vo), or alternatively by (P;Q;,vo) with 

2P=Eo -s, 2Q=Eo +s, (3.2) 

and the decomposition of such an irrep in multiplets (E,j,y) 
or (p,q,y) of SO(3,2) XU(1) is given in Table I. This de
composition was already given by Ceresole, Fre, and Nico
lai.5 Ifwe puts = 1, then the firsttwo columns of Table I give 
the hypercharge, energy and spin values of the N = 2 gravi
ton multiplets. 5 

A representation (Eo;s;,vo) consisting of 16 subalgebra 
irreps, as the one in Table I, is called an unshortened repre
sentation. When one or several of the subalgebra irreps 
(E,j,y) are missing in the decomposition of (Eo;s;,vo) one 
speaks of multiplet shortening. This phenomenon has al
ready been considered by Freedman and Nicolai,3.4 and later 
by Ceresole et al.5 Multiplet shortening can occur for two 
reasons. The first origin of shortening can lie in the structure 
of the irreps of the subalgebra SO(3,2) xU(1). For in
stance, one condition is that/>O. In this case, putting s = 0 
in Table I, the irreps with spin s - ! or s - 1 cannot occur: 
this gives rise to multiplet shortening. 

This can also be illustrated by the Class 2 representa
tions ofOsp( 1,4) in the classification ofHeidenreich6

: these 
representations are just truncations of the unshortened Class 
4 irreps. 

As a second example, it is known that E = j +! (for 
j = O,!) and E = j + 1 (for j = q, ... ) are special representa
tions ofSO(3,2) (Refs. 3 and 9). Hence when such condi
tions occur, multiplet shortening may appear also due to the 
internal structure ofSO(3,2) irreps. This is the case for the 
Class 1 and Class 3 irreps of Osp ( 1,4) in the previously men
tioned paper.6 

In this paper, we will be concerned with the second ori
gin of multiplet shortening, which lies in the structure of the 
irreps of Osp(2,4) themselves. Actually, such shortened 
representations are then the reflection of atypical represen
tations in the infinite-dimensional case, as we shall see in Sec. 
IV. In the present section, we shall analyze the Osp(2,4) 
irreps by means of some tensor operator calcul us. It will turn 
out that, if certain conditions are satisfied, the 16 subalgebra 
irreps of Table I are not connected to each other in an irredu
cible representation of Osp (2,4 ), but that only a part of the 
16 irreps form an irreducible representation of the Lie super
algebra: then, one deals with a shortened representation. 
Whether the irreps (E,j,y) in Table I are all part of one 
unitary irreducible representation of Osp (2,4), can be ana
lyzed by computing the reduced matrix elements of the 
SO(3,2) tensors Qij and Qij between states of different 
SO (3,2) xU ( 1) representations. This method is closely re
lated to the one used by Inaba et aU to investigate Osp( 1,4) 
representations. 

TABLE I. Decomposition ofa general Osp(2,4) irrep (Eo;S;Yo) [or (P;Q;yo) 1 into representations (E.j,y) [or (p,ij,y)] of50(3,2) xU(l). 

yvalue 

yo±2 

Yo± 1 

Yo 

760 

(EJ) 

(Eo + 1,5) 

(Eo + ~,s + p, (Eo + !,s - P 
(Eo +~,s + p, (Eo + l,s - p 

(Eo,s), (Eo + 1,5 + I), (Eo + 1,5) 
(Eo + 1,5), (Eo + 1,5 - 1), (Eo + 205) 
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(p,ij) 

(P+ !,Q+ p 
(P,Q+ p, (P+ ~,Q) 

(P+ !,Q+ 1), (P+ I,Q+ p 

(P,Q)' (P,Q + 1), (P + !,Q + p 
(P+ !,Q+ p, (P+ I,Q), (P+ I,Q+ 1) 
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The reduced matrix elements of the Qij and Qij tensor will be determined in the following chain: 

Osp(2,4) ::::>SO(3,2) XU( 1) ::::>SU( 1,1) XSU( 1,1) XU( I) ::::>U( I) XU( 1) XU( I). (3.3) 
(P;Q;yo) (p,q,y) p q y mp mq Y 

The Osp(2,4) irrep is labeled by (P;Q;yo), where (P,Q) are 
the lowest SO(3,2) labels, and Yo the corresponding hyper
charge. Then, (P;Q;yo) decomposes in some SO(3,2) 
XU( 1) irreps (p,q,y), and finally, the states in an SO(3,2) 
irrep (p,q) can be described by8,9 

I (p,q),p,mp,q,mq >, mp = p,p + 1, ... , 
(3.4) 

mq = q,q + I, ... , 
and where the possible values of ( p,q) in terms of ( p,q) are 
given in Ref. 9. Hence a basis state ofOsp(2,4) can be writ
ten in the form 

(3.5) 

It is in this basis that we shall perform the calculations. Con
sider the basis state, with highest Y value, and denoted by 

IP + ~,Q + !,Yo + 2» 

= I (P;Q;yo) (P + !,Q + !,Yo + 2),P + !, 
P+ !,Q + !,Q + p. (3.6) 

Hereafter, the notation I p,q,y» shall be used to indicate the 
basis state (3.5) with lowest SO(3,2) weight, i.e., 
p = mp =pandq = mq = q. The eigenvalue of the SO(3,2) 
Casimir operator 12 on states of an irrep ( p,q) is well known: 

(12 ) = p2 2p + q2 q. (3.7) 

Consider now the action of the Osp(2,4) Casimir C2 upon 
the basis state (3.6). Since all the Qij operators produce zero 
terms, one finds the following expression for the C2 eigenval
ue: 

(3.8) 

Making use of {QO!2}O,Q _ (l!2}0} = -Po + !Y, the Casi
mir C2 can be written in the following form: 

C2 12 + Q(l/2)0 Q - (112)0 + Q( 112)0 Q - (112)0 

+ QO(l/2}Qo- (112) - Qo- (112) Q0(1/2) 

+po +!Y _!y2. (3.9) 

The action of the latter form upon the basis state (3.6), pro
duces 

Q(1/2)oQ - (112)0 IP + !,Q + ~,yo + 2» 

= !(yo - 2P + I) IP + !,Q + !,yo + 2». (3.10) 

Now we express that the representation must be unitary, this 
means that we can make use of (2.11) in order to deduce 
from (3.10) that 

1 ( (P,Q + ~,yo + IIQ _ (l/2}0 IP + ~,Q + ~,yo + 2) ) 12 

= - !(yo - 2P+ I). (3.11 ) 

Hence, unitarity implies that 2P - Yo - 1;;.0. Moreover, we 
see that when Yo - 2P + 1 = 0, the matrix element (3.11) 
vanishes, and then also the reduced matrix element of Qij 
between the SO(3,2) xU(1) irreps (P + ~,Q + ~,yo + 2) 
and (P,Q + !,yo + I) becomes zero. This shows that, in the 
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I 
latter case, the two subalgebra irreps do not belong to the 
same irreducible representation of Osp (2,4) . 

Let us now continue the analysis by going from 
IP,Q + !,yo + 1» to IP,Q,yo) ). For this purpose, we have to 
bring C2 in the following form: 

C2 = 12 + Q(lI2)oQ - (\12)0 - Q - (\/2)OQ(\/2)0 

+ QO(l/2) Qo - (1/2) + QO(l/2) Qo - (1/2) 

+ qo + !Y - !y2
• (3.12) 

Consider the action of (3.12) on IP,Q + !,yo + I»: obvious
ly, the contributions from Q(1!2}oQ _ (1/2)0 and 
QO{lI2) Qo- (1/2) vanish, and on the other hand 
Q _ (112)0 Q (1/2)0 IP,Q + !,Yo + 1» is easy deduced from 
(3.11). So, one obtains that 

QO(1/2) Qo- (\/2) IP,Q + !,Yo + 1) 

!(Yo - 2Q) IP,Q + !,Yo + 1», 

or, making use of the Hermiticity conditions, 

(3.13 ) 

1 «P,Q,yoIQo- (112) IP,Q + !,Yo + 1))12 = - ~(yo - 2Q). 
(3.14) 

This gives rise to the inequality 2Q - yo;;'O, and again, when 
2Q - Yo = 0, the subalgebra irreps (P,Q + ~,yo + 1) and 
(P,Q,yo) do not belong to the same irreducible representa
tion ofOsp(2,4). One can proceed in the same way, and by 
rewriting the Lie superalgebra Casimir C2 in some alterna
tive forms, one finds 

I ({P,Q + !,yo - lIQo(1I2) IP,Q,yo» 12 = !(yo + 2Q), 

{{ 1
- 1 »1 2 (3.15) 

1 P + !,Q + !,yo - 2 Q(lI2)O P,Q + !,Yo - 1 

=!(Yo+2P-I). (3.16) 

Until now we have determined only four special matrix ele
ments. Detailed calculations, much facilitated in the chain to 
SU ( 1,1) X SU ( 1,1), showed that the computation of the re
maining (reduced) matrix elements always gives rise to one 
of the conditions obtained from (3.11) or (3.14 )-(3.16). As 
a consequence, the representation (P;Q;yo) of Osp(2,4) is 
unitary if the following conditions are satisfied: 

Yo - 2P+ 1<;;0, 

Yo-2Q<;;0, 

Yo + 2Q;;.0, 

Yo+ 2P-l;;'O. 

This leads to 

2P>1Y01 + 1, 2Q;;.IYol. 

(3.17a) 

(3.17b) 

(3.11c) 

(3.11d) 

(3.18) 

Making use of (3.2), the relations (3.18) can be expressed in 
terms of the labels (Eo;S;Yo) of an Osp(2,4) irrep: 

Eo-s;;.lYol + 1, Eo+s;;.lYol. (3.19) 

The last condition is redundant, and hence the only unitarity 
condition is given by 
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TABI:~..n. Decomposition of a shortened Osp(2,4) irrep (Eo;s;)'o) with Eo = Yo + s + I [or (P;Q-Jlo) with Yo - 2P + I = 0] into representations (E joY) 
[or (p,q,y)] ofSO(3,2)XU(l). ' 

y value (E,j) 

Yo + I (Eo + !,s + P 
Yo (Eo,s), (Eo + I,s + I), (Eo + 108) 

Yo - I (Eo + !,s+ p, (Eo + !,s- p, (Eo +1's + p 
Yo - 2 (Eo + I,s) 

Eo> iYol + s + 1. (3.20) 

This is completely in agreement with Ref. 5. 
As we have seen before, the irrep of Osp (2,4) will be 

shortened if the equality in one of the four conditions (3.17) 
is satisfied. Hence there are four types of shortened multi
plets: 

Eo=yo+s+ 1, 

Eo =Yo -s, 

Eo= -Yo-S, 

Eo = - Yo + s + 1. 

(3.2Ia) 

(3.2Ib) 

(3.2Ic) 

(3.2Id) 

In the first case, all matrix elements having (yo - 2P + I) as 
a factor vanish, and various reduced matrix elements of Q .. _ lJ 

or QIj between states of SOC 3,2) X V (1) irreps (p,q,y) be
come zero, such as in (3.11). Then the irreducible represen
tation of Osp(2,4) consists of only eight subalgebra irreps, 
instead of the 16 subalgebra irreps of Table I. These eight 
SOC 3,2) X V ( I) irreps are given in Table II. Tables 111-V 
give the structure of the Osp(2,4) irreps in the case that 
(3.2Ib)-(3.2Id) are satisfied: again there are only eight sub
algebra irreps. 

A special case occurs when two boundary conditions are 
satisfied simultaneously. It is easy to see that only (3.2Ia) 
and (3.2Id) can occur at the same time if we also require 
(3.20), namely for 

Yo = 0, Eo = s + 1. (3.22) 

Then, all reduced matrix elements with a factor 
(yo - 2P + 1) or a factor (yo + 2P - 1) vanish. Conse
quently, it follows from Tables II and V that the irrep (3.22) 
is "ultrashort," and contains only four SO(3,2) XV( 1) ir
reps (s = O,p, ... ): 

(p,ij) 

(P,Q+P 
(P,Q), (P,Q + I), (P + !,Q + p 

(P,Q + !), (P + !,Q), (P + !,Q + I) 

(P+!,Q+P 

(Eo = s + 1;S;.vo = 0) -+ (E = s + ~,s + !,y = 1) 

EJj (E = s + l,s,y = 0) 

EJj (E = s + 2,s + loY = 0) 

EJj (E = s + ~,s + !,y = - 1). 
(3.23) 

IV. THE RELATION BETWEEN ATYPICAL 
REPRESENTATIONS AND SHORTENED 
REPRESENTATIONS 

Finite-dimensional irreducible representations of Lie 
superalgebras have been studied by Kac. 2 In this reference, 
the important distinction between typical and atypical rep
resentations is introduced. A typical representation of a Lie 
superalgebra L = Lo EJj L1 decomposes in general in 2M ir
reps of the even subalgebra Lo, where M is the number of 
positive odd roots. Atypical representations have not yet 
been studied in general, but in several case studies 10-15 one 
notices that they always decompose in less than 2M irreps of 
Lo, hence they can be seen as shortened representations. 

In supersymmetry or supergravity theories however, 
one is only interested in infinite-dimensional unitary repre
sentations of a Lie superalgebra. Again, there is no general 
theory of infinite-dimensional irreps of Lie superalgebras, 
but there are some case studies available.6.10.14.15 The Lie 
superalgebras Osp(1,2) (Ref. 10) and Osp(1,4) (Ref. 6) 
have no atypical representations, since they are of type 
B(O,n). But the superalgebras Osp(3,2) (Ref. 14) and 
Osp(4,2) (Ref. 15) do have atypical representations: it was 
shown that infinite-dimensional atypical representations ex
ist, and moreover, that the unitarity conditions could be de
duced from the atypicality conditions. 

Let us now consider the case of Osp (2,4). According to 

T~~LE III. Decomposition of a shortened Osp(2,4) irrep (Eo;s;),o) with Eo = Yo - s [or (P;Q;)'o) with Yo - 2Q = 0] into representations (E,j,y) [or 
(p,q,y)] ofSO(3,2)XU(l). 

762 

yvalue 

Yo+ I 
Yo 

Yo-I 
Yo-2 

(E,j) 

(Eo + !,s- p 
(Eo,S), (Eo + 108), (Eo + 108 - 1) 

(Eo +!,s + P,(Eo + !,s - p, (Eo + 1's - P 
(Eo + I,s) 
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(M) 

(P+!,Q) 
(P,Q), (P + !,Q + p, (P + I,Q) 

(P,Q + p, (P + !,Q), (P + I,Q + p 
(P+!,Q+ P 
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TABLE IV. Decomposition of a shortened Osp(2,4) irrep (Eo;S;)lo) with Eo = - Yo - s [or (P;Q;)Io) with Yo + 2Q = 0] into representations (E.j.y) [or 
(P.q,y)] ofSO(3.2)XU(I). 

yvalue (E.j) 

(Eo + l.s) Yo+2 
Yo+ 1 

Yo 
Yo-I 

(Eo + !,s+ p. (Eo + !,s- p. (Eo+~,s- P 
(Eo,s). (Eo + 105). (Eo + 105 - 1) 

(Eo + !,s- p 

Kac,2 an irreducible irrep (01;02;03) ofC(2) =Osp(2,4) is 
atypical if one of the following conditions is fulfilled: 

(4.1 ) 

° I - 02 - 203 - 3 = 0, ° I - 202 - 203 - 4 = 0, 

otherwise it is typical. The conditions (4.1) can be deduced 
from 

(A+p,a) =0, aE6.t, (4.2) 

with A the highest weight of the irrep, p half the sum of 
positive even roots minus half the sum of positive odd roots 
of C(2), 6.t the set of odd positive roots a for which 2a is 
not an even root, and ( ... , ... ) the bilinear form in weight 
space induced from a fixed nondegenerate bilinear form on 
the Lie superalgebra. The highest weight A can be written as 

A = (C,AI,A2) = (01 - 02 - 03'(02 + 03)/2,03/2). (4.3) 

Herein c, A I' and ..12 are the eigenvalues of the three diagonal 
U(1) operators in the chain Osp(2,4) ::JU(1) XSO(3,2) 
::J U ( 1 ) xU ( 1 ) X U ( 1 ). Instead of using the highest weight, 
one can also express the atypicality by means of the lowest 
weight - A: 

(-A-p,a) = 0, aE6.t. (4.4) 

This gives rise to the four equations 

- C + U I + 4 = 0, - c + U 2 + 3 = 0, 

- c - U I = 0, - c - U 2 + 1 = O. 
(4.5) 

All this holds for finite-dimensional irreducible representa
tions with lowest weight - A. But consider now the case of 
an infinite-dimensional representation with lowest weight 
- A. Then, part of the theory of Kac2 can be repeated, and 

the representation may again be called atypical if one of the 
conditions (4.4) is fulfilled. According to Table I, the lowest 
y value is Yo - 2, and the corresponding (p,q) values are 
P +!, Q +!. Hence in that case the lowest weight is 

- A = ( - C, -AI' -..12) = (yo - 2,P+ !,Q+ !). (4.6) 

With this identification, the relations (4.5) read 

(P.q) 

(P+ ~.Q+ P 
(p.Q + p. (P + !.Q). (P + I.Q + p 

(P.Q). (P + !.Q + p. (P + I.Q) 
(P+!.Q) 

Yo - 2P + 1 = 0, Yo - 2Q = 0, 

Yo + 2P - 1 = 0, Yo + 2Q = O. 
(4.7) 

But these are precisely the conditions we have deduced in 
Sec. III. Hence we have shown that the atypicality condi
tions, transferred to infinite-dimensional representations 
with lowest weight, give rise to a set of conditions which 
correspond precisely to the ones for a shortened representa
tion for the Lie superalgebra Osp(2,4). In fact, we can say 
that shortened representations are "atypical infinite-dimen
sional" irreps, whereas unshortened representations are 
typical. 

V. UNITARY CONDITIONS FOR Osp(N,4) (3<N<8) 

An atypicality condition is a linear combination of la
bels put equal to zero. In Sec. III we have seen that they are 
precisely these linear combinations which appear in the ex
pressions of reduced matrix elements of odd tensors between 
states of subalgebra irreps. Hence when those linear combi
nations are identically zero, the representation is shortened. 
But, moreover, these linear combinations also appear when 
positivity conditions (deduced from Hermiticity relations 
for the generators) are required. As a consequence, these 
atypicality conditions are also the boundary conditions for 
unitarity. 

We have worked this out for the infinite-dimensional 
representations (with lowest weight) of Osp(N,4) 
(3..;;N..;;8). In this case, an irrep of Osp(N,4) is character
ized by its lowest energy value Eo, the corresponding spin s, 
and the Dynkin labels (01'02"") of the finite-dimensional 
irrep of SO(N). This irrep of Osp(N,4) contains 
(Eo,s) X (01'02"") as an irreducible SO(3,2) XSO(N) com
ponent. In Table VI we have summarized the unitarity con
ditions. These tum out to be simpler than in the case of 
Osp(2,4). This is because Osp(2,4) is a Lie superalgebra of 
type I, whereas Osp(N,4) (N)3) is a Lie superalgebra of 
type II (B(m,2) or D(m,2»). 

TABLE V. Decomposition ofashortened Osp(2.4) irrep (Eo;s;)Io) with Eo = - Yo + S + 1 [or (P;Q;)Io) withyo + 2P - 1 = 0] into representations (E.j.y) 
[or (P.q.y)] ofSO(3.2)XU(1). 

763 

yvalue 

Yo+ 2 
Yo + 1 

Yo 
Yo -1 

(E.j) 

(Eo + 105) 

(Eo + !,s+ p. (Eo + ~,s-!). (Eo+~,s+ P 
(Eo.s). (Eo + 105 + 1). (Eo + 105) 

(Eo +!,s + p 
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(P+ !.Q+ P 
(P.Q+p. (P+!.Q). (P+~.Q+ 1) 

(P.Q). (P.Q + 1). (P + !.Q + p 
(P.Q+p 
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TABLE VI. Unitarity conditions for irreps (Eo,s;a l.a2 ••.• ) of Lie superalge
bras Osp(N.4). 

N 

3 
4 
5 
6 
7 
8 

unitarity condition 

Eo>s+2a, + 1 
Eo>s + 2a, + 202 + 1 
Eo>s + a l + !a2 + 1 

Eo>s+a , + !(a2 +a3) + 1 
Eo>s + a I + a2 + !a3 + 1 

Eo>s+a , +a2 +!(a3+a4 ) + 1 

For N = 3. the Dynkin label al ofSO(3) is usually re
placed by its half-valuej = a1/2. Thenj can be integral or 
half-integral, and the unitarity condition becomes 

Eo>s+j+ 1, (5.1) 

in agreement with Ref. 5. Similarly, for N = 4, the Dynkin 
labels (a l ,a2 ) of the SO(4) irrep are in general replaced by 
the labels (j1,j2) = (a/2,a2/2) of SU(2) XSU(2) 
:::::SO(4). Then, one has 

Eo>s+jl +j2+ 1. 

Note that in the case of an equality in Table VI, the represen
tation will be shortened. 
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The asymptotic expression of a Wiener functional integral using the eigenvalues of the 
associated Sturm-Liouville equation is obtained, correcting previous formulas giving a 
divergent result. 

I. INTRODUCTION 

In the last few years the functional integration tech
niques have been widely used in many fields of theoretical 
physics. 1,2 In spite of their intrinsic difficulty, it is possible to 
obtain in this way a variety of general results especially when 
we are concerned with nonlinear problems. For example, we 
are interested in the study of the statistical mechanics of one
dimensional solitary-wave-bearing scalar fields3 and quan
tum tunneling in dissipative systems,4 in the instanton ap
proach to the particle quantum mechanics and to quantum 
field theories,5,6 and in the first quantum corrections to the 
thermodynamics of nonlinear systems.7,s 

The main objects we are interested in are the Feynman 
propagator in its Euclidean version (i.e., for imaginary 
time) and the partition function; they are essentially Wiener 
integrals, whose asymptotic form is often needed (the classi
calli-+O limit in the propagator, and the low-temperature 
limit in the partition function). The Laplace method for or
dinary integrals can be extended to the Wiener integrals,9 so 
that the functional involved in the integration turns out to be 
a quadratic functional. 

II. THE QUADRATIC APPROXIMATION 

In order to fix the ideas, let us consider the Euclidean 
action for a particle6: 

S [x] = iT .2"(x,x)dt, x(O) = 0, x(T) =x, (1) 

with 

.2"(x,x) = ~ mJc2 + Vex) (2) 

and x = dx/dt (t = imaginary time), m is the mass of the 
particle, and Vex) is the potential energy. 

The Euclidean propagator takes the form6 

G(X,T) = f gx exp{ - ! S [X]} , (3) 

where g x is the symbolic expression of the differential in 
function space. In the small-Ii limit we can write 

G=Pexp { - ! S [X]}, 
(4) 

P= f gyexp{ - 2~ 82
S[Y]} , 

where x is the classical trajectory satisfying 8S = 0, 
Y = x - x, so that yeO) = y( T) = 0, and 82S is the second 

variation of S in the neighborhood of X. It is a quadratic 
functional in y, y, given by 

82S [ ] = iT (a 2.2" ;,2 + 2 a 2.2" . + a 2.2" 2) dt 
y !I' 2 Y !I !I' yy !I 2 Y , 

o cJX cJX cJX cJX 
(5) 

where the coefficients are calculated along x(t) and there
fore are known functions oft. Using the simple form (2) for 
the Lagrangian, one obtains 

IPS [y] = miT (f + W(t)y2)dt, 

1 a2vI W(t) =---2 . 
m ax X=X 

(6) 

As it is well known, G can be calculated in terms of the 
solution of an auxiliary differential equation involving W(t) 
(Ref. 10). An alternative method is the following: a change 
of variables is performed by the expansion II 

l"'<X! 

y(t) = L anY" (t), (7) 
" 

where the y" (t) are the orthonormal set of eigenfunctions of 
the Sturm-Liouville (Schrodinger-like) equation 

[!22 - W(t) +An]Y" =0, y,,(O) =y,,(T) =0. (8) 

In this way, a function y(t) is represented by the discrete 
infinity of the coefficients a", rather than by the continuous 
infinity of the numbers y(t), O<t<T. It turns out that 
82S[ y] is now expressed byll 

_1_82S[y] = Ii"" A~a~, (9) 
21i " 

with 

A ~ = etA", a = m/21i. 

If J is the Jacobian of this change of variables, so that 

"" da 
gy=JII -", 

,,=1 {iT 
(10) 

the resulting asymptotic form of P is 

P=JIT (A~)-1/2. (11 ) 
11=1 

In the case of negative and zero eigenvalues, this formula can 
still be applied, when the particular features of Wet) are 
taken into account. 3,5 
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III. THE PROBLEM OF THE DIVERGENCY 

The previous arguments are well known, and Eq. ( II ) is 
used everywhere without problems. But a remark is neces
sary; in many applications, only the ratio of two expressions 
like ( II ), with different W( t), is needed, so that an essential 
drawback is not apparent at first sight: this expression for P 
is in fact a divergent one. 

As a concrete example, let us pose 

Vex) =! mltix2 (12) 

so that wet) =(JJ2 [see Eq. (6)]. In this case Eq. (4) is 
exact, and the standard approach for quadratic functionals 
gives 10 

P= gyexp - -628 [y] =. . 
f {

I } ( a(JJ )112 
21i 11' smh «(JJ T) 

(13) 

Let us try to use Eq. (11); from Eq. (8) one has 

A.n = (JJ2 + n2r1T2. (14) 

The Jacobian J is easily calculated: we write Eq. (10) in a 
discrete form, considering y (t) as the limit ofthe step func
tion y(tk)' tk = kT IN, k = 1,2, ... , N - 1, for N -- 00. The 
expansion (7) becomes [y(k) = y(tk)' Yn (k) = Yn (tk) ] 

N-I 

y(k) = L anYn (k). (15) 
n=1 

Taking the expression of a functional integral as the limit for 
N -+ 00 of an N-dimensional integral lO 

f gy= !~n: A -N J-.J dy(1) dy(2)"'dy(N-1), 

A=(11'TlaN)lIz, (16) 

and using Eq. (15), from which 

J-. J dy(1) .. 'dy(N - 1) 

= det (Oy(i») f·· ·fda .. 'da !I IN-I' uaj 

where 

( 

YI(1) 
det ( ayu) ) = det : 

oaj YN-I(1) 

= !:leN), 

we obtain 

(17) 

YI(N:- 1) ) 

YN_dN-l) 

(18) 

J = lim J(N), J(N) =A -N11'(N-I)/2!:l(N). (19) 
N-oo 

Here !:leN) is calculated by multiplying the matrix in Eq. 
( 18) by its transpose, and it is easily seen that it can be put in 
the form 

!:leN) = (N IT)(N-I)/2j(N), (20) 

where limN _ 00 f (N) = 1, using the orthonormality of the 

Yn' 
This is not a novel result l2 but, putting these expressions 

in Eq. (11), one has 
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N-I 

P= lim J(N) II (A. ~ )-1/2 
N-oo n=1 

= lim (11'T)-NI211'(N_I)/2(N)(N-1l/2a _(N_I)/2 
N-oo aN T 

N-I( n2r) -112 
X JJI (JJ2+y 

= lim!!..- 11'(N - 1)/2 _ a - (N - 1)/2 
( T)

-NI2 (N)(N-I)/2 

N-oo aN T 

(
T)N-I 1 N-I( (JJ2T2)-1I2 

X - II 1 +-2 - , 
11' (N - 1)! n= I n r 

so that, accounting for Stirling's formula, P diverges to zero 
as 

[
. (11')112 ( e )N] ( a(JJ )112 
!~"2 -; 11' sinh «(JJ T) . 

(21) 

This meaningless result shows clearly that Eq. (11) is not 
correct in the present form and a careful investigation is 
needed. Oddly in many important papers this formula is 
written without any explanation3,s,6.13; even if in the final 
result only the ratio of two functional integrals appears, it is 
necessary to show that the divergent factor is the same, irre
spectively of the form of W( t). 

The key of the question is the following: Eqs. (7) and 
( 8) can be used only if the limit N -- 00 is performed, i.e., 
when x(t), yet), are continuous functions in the interval 
(O,T). On the contrary, since Eq. (II) is to be calculated as 

N-I 

P = lim J(N) II (A. ~) -1/2, 
N-oo n= I 

(22) 

the A.n to be considered are the eigenvalues of a 
(N - I) X (N - I) matrix, rather than of a differential 
equation, and are therefore functions of N. In other words, 
denoting by A.n (00) the eigenvalues ofEq. (8), one has 

N-I 

P= lim J(N) II (A.~(N»)-1/2 
N-oo n= 1 

N-I 

=1= lim J(N) II (A. ~ ( 00 »-112. 
N-oo n=l 

(23) 

Our aim is to express P by the A. n ( 00 ) introducing an "effec
tive" Jacobian j(N) valid for every Wet). 

IV. THE CORRECT EXPRESSION FOR P AND THE 
"EFFECTIVE" JACOBIAN 

We begin to write P in the usual "finite-mesh" form 10 

PN =A -N J-.J dYI· .. dYN_I (24) 

{ [
N-I(y _y)2 ]} 

Xexp - aE j~O j+ IE j + WjyJ ' 

where E = T IN'Yk is the same asy(k) in Eq. (16) and Wj 
= W(tj)' tj = Ej. The argument in the exponential is noth

ing but ( - (1I21i)628(N») and can be written in the form lO 
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1 N-I 
- ~2S(N) =!!.... 2: AijY;Yj, 
21i E ;.j= I 

(25) 

where 

(A) = (Ao) +c(W). (26) 

Here (Ao) and ( W) are matrices given by 

- 1,2, - 1,0, ... ,0 0,W2,0, ... ,0 

( 

2, - 1,0,0, ... ,0 ) (Wl>O,O, ... ,o) 
(Ao) = . , (W) = . . . . . . 

0,0, ... , - 1,2 O"",WN _ I 

(27) 

Using the unitary matrix whose elements are12 

B lm = (2/N) 1/2 sin(17'lm/N), (28) 

we go to the new coordinates ak defined in 

Yn = ~Bnkak' 

so that 

(29) 

PN =A -Nf···fdal···daN-1 exp{ -!!.... Ntl Hija;aJ}, 
E ;.}= I 

(30) 

where 
N-I 

Hij=(BtAB)ij=A~~ij+CW;j' Wij= ~I W;Bi/Blj 

and 

A ~ = 4sin2(k17'/2N) 

are the eigenvalues of (Ao) (Ref. 12). 

Posing ak.Ji = bk, it follows that 

PN =A -NE-(N-I)!2f···f dbl· .. dbN_ I 

{ 
N-I } 

Xexp -!!.....2: Hijb;bj c I.J=I 
and we eventually obtain 10 

PN = {A -NE - (N-I)!217'(N-I)/2) {det(a/C)Hij)}-1/2. 

(31) 

(32) 

(33) 

(34) 

Denoting by h; the eigenvalues of (H), we can perform the 
well-known expansion [see Eq. (31)] 

h 10 .2W .A~ IWijl2 
;=.II.;+e ii+e~ ° 0+· .. · 

H;A; -A j 

(35) 

This expansion, of course, converges, accounting for the 
expression of the A ~ [Eq. (32)] and of the Wij' given by Eq. 
(31): 

Wij = Nil W/BjJB lj -+ .!. iT W( t) [coi 17't(i - j») 
/= I N~oo T ° "\ T 

_ co{ 17't(~+ j»)] dt (36) 

and representing essentially the Fourier components of W(t). 
In this way, we can write 
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de{;Hij) 

N-I(a ) N-I a ° N-I( C 
= II .2 hk = II .2 A kill + -0 Wkk 

k = I e- k = I e- k = I A k 

+ 2: ~ 0 C ° IWlgl2 + ... ). 
J#Ak Ak -A j 

(37) 

The last step lies in performing the limit N -+ 00 in Eq. (34); 
inserting the explicit expression of A ~ in Eq. (37), it is easily 
seen that in the second product the (lim) and (17') operations 
can be interchanged: 

A~ = 4N
2 

Sin2(k17') -+ k2~ =A~(oo). (38) 
C T2 2N N~oo T2 

The A ~ ( 00 ) are the eigenvalues of the equation 

[:t: +A ~ (00)] y(t) = 0, Y(O) = yeT) = 0. (39) 

In this way we can write 

lim det(a/c)Hij) 
N~oo 

The last expansion is nothing but A k ( 00 ), the k th eigenvalue 
ofEq. (8), and the limit becomes 

N-I AO/C N-I 
lim II k II Ai.(oo), Ai.(oo) =aAk(oo). 
N~"" k=1 A~(oo) k=1 

(40) 

We see therefore that P is written in a form similar to that 
given in Eq. (22); the first factor in brackets in Eq. (34) is 
nothing but the JacobianJ(N) [see Eq. (19)], but the sec
ond one differs from the product of the (A i. (00 »)-1/2 in the 
factor 

lIE k
oo =11 17' 

N - I (A ° ( ) )1/2 N - I k 
k = I A ~ k = I 2N sin (k17'/2N) 

(41) 

Using the trigonometric formula 14 

N-I . (k17') -IN II sm - =--
k= I 2N 2N- I 

and Stirling's approximation, we obtain 

N if E(A ~ (:, ) ) 112 -+ (~) 1/2 (!!...)N. (42) 
k=1 Ak N~"" 17' e 

From Eqs. (19), (34), (40), and (42), the final result is 
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p= lim (~)1/2(.!!....)NJ(N) Nif (A k(oo))-1/2 
N- 00 1T e k 

N-l 

= lim J(N) II (A k(oo))-1/2. (43) 
N-oo k= 1 

In other words, Eq. (22) is applicable, provided thatJ(N) is 
replaced by the "effective" Jacobian 

J(N) = (2hr)1/2(1T/e)N J(N), (44) 

irrespective of the particular form of W(t). For example, if 
W(t) = oi, Eq. (44) gives the correct result for P [see Eq. 
(21)] . 

v. CONCLUDING REMARKS 

We have given here an expression for the asymptotic 
form of integrals in function space, in terms of the eigenval
ues of the Schrodinger-like equation associated with the sec
ond variation of the functional. This expression corrects pre
vious formulas and shows that the eigenvalues of this 
equation can still be used (without solving the more difficult 
eigenvalue problem for the functional in discrete form) , pro
vided that an "effective" Jacobian is introduced. This could 
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appear only a conceptual improvement, since in actual cal
culations the ratio of such integrals is especially needed; but, 
in order to obtain the correct result, it is important to show 
that the change in the Jacobian is common to all the forms of 
functions W(t). 
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Recently Antone [J. Math. Phys. 26, 940 (1985)] has presented a compact expression for 
Lowdin's a function, and expected that, in calculation on the electronic properties of molecules 
and solids, it is the most convenient of all the expressions available in literature. But, in the 
present paper, it is shown that the expression for the a function obtained from the expansion 
formula of Silverstone and Moats [Phys. Rev. A 16,1731 (1977)] is remarkably more 
compact and, therefore, more convenient than Antone's expression. Though not visibly, it is 
proved with the aid of some manipulation that the formula of Silverstone and Moats can be 
reduced to the well-known expansion formula of a solid harmonic. In the special case where 
the center of the function to be expanded and that of the a function both are located on the z 
axis, some mistakes are found that lead to Antone's expression for the a function. 

I. INTRODUCTION 

A function of the formF(R) =f(R) Yf({}R,ifJR) is ex
panded in terms of radial functions and spherical harmonics 
at a new origin, a position from which is denoted by polar 
coordinates (r, 0, ifJ). Here the new origin is assumed to be 
located at the position displaced from the old origin by - a, 
i.e., R = r - a. Usually, this expansion radial function is 
called LOwdin's a function. 

the relation between the expression for the a function de
rived from the formula of Silverstone and Moats and the one 
given by Antone, will be manifested, and the latter expres
sion in the above case will be given in an explicit form. In the 
last section, Sec. IV, will be described how much better the 
former expression is than the latter. 

Recently, Antone has presented a compact expression 
for the a function, and expected that, in calculations on the 
electronic properties of molecules and solids, it is more con
venient than any other expression available to date. 1 But, in 
his paper, it is not realized that the expansion formula2 of 
Silverstone and Moats provides a very simple expression for 
the a function. Certainly, whenf(R) = R L, their formula is 
not reduced visibly to the well-known formula of a solid 
harmonic.3 But, with the aid of some manipulation, the re
duction can be accomplished. This will be shown in Sec. II. 
In Antone's paper, in the special case where the two origins 
both are placed on the samez axis, there are a few mistakes in 
the course which led to his expression for the a function. 
These will be pointed out clearly in Sec. III. Also, in Sec. III, 

I 

II. REDUCTION OF THE FORMULA OF SILVERSTONE 
AND MOATS TO THE EXPANSION FORMULA OF A 
SOLID HARMONIC 

Silverstone and Moats obtained an expansion formula of 
feR) Yf(OR,ifJR) by means of the Fourier-transform con
volution theorem for overlap integrals.2 The formula may be 
written as 

f(R)Yf(OR,ifJR) 
00 L + 1 1 [(21 + 1) (24 + 1)] 112 

= L 2L L 
1=0 A=IL-Ilm=-I 41T(2L+1) 
XC(lAL; m M - m)C(/AL; 0 0)V1AL (r,a) 

X Y,!,(O,ifJ) Y'j - m(Oa ,ifJa)' (1) 

where 

(L+I+A)/2 [(L+I+A)/2J-K (L K 'I k 
vIAL (r,a)=21T(-l)(L-I+A)/2a-1 L L - -~).( - -!)!(-(L+I-A)/2+K+k-!)! 

K=O k=O K!k!(L+I+A)/2-K-k)! 

(
r)2k-l- I i,+a (R)2K-L+I 

X - dR - feR). 
a I,-al a (2) 

Here C(UL; m M - m) and C(lAL; 00) are the Clebsch-Gordan coefficients.4 The factorial for a half-integer has been 
defined by Eq. (1) of Ref. 5. 

When f(R) = R L, Eq. (1) should be reduced to the famous expansion formula of a solid harmonic.3 This is proved in the 
following. Setting feR) =.R L in Eq. (2) and then putting R la=.S and rla=.s, we obtain 

a) Present address: Institute for Communication Sciences, The University of 
Electro-Communications, Chofu-Shi, Tokyo 182, Japan. 
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(L+I+A>/2 [(L+I+A)12I-K(L _ K - P!(/- k - P!( - (L + I-A}/2 + K + k - !)! 
v (ra) - 217'( 1)(L-I+A>/2aL" " 
V.L' - - K£:O k~O K!k!(L+I+A)/2-K-k)! 

i
~+l 

X$2k-l-l dSS 2K + 1• 

/$ 1/ 
(3) 

The definite integral in Eq. (3) proves to be expressed in terms of power series of s as 

ra 
1 dS S2K+ 1= .f K!(K + P! $2P+ 1 

)/$-1/ p-O p!(P + V!(K - p)!(K - p + pI 
(4) 

by carrying out the integration over S and then manipulating the result. Introducing Eq. (4) into Eq. (3), changing the 
summation order some times, and then replacing the summation indices by new ones, we arrive at 

(L+I+A)/2 
VIAL (r,a) = 211'( - 1) (L -I + A)12aL I IA,n$2n - I, (3') 

n=O 

where 

IA = (L+I+A)/2-n ± (-(L+I-A)/2+n+p-!)!(p+q+P!(L-p-q-p!(l-n+q-p!. (5) 

,n p~o q 0 p!(P + D!(L + 1+ A)/2 - n - p)!q!(q + D!(n - q)! 

Here the use of the following relation obtained by setting w==max{q, L + 1}, p=min{q, L + l}, and v= - L + P -! + P 
in Eq. (Bl) of Ref. 5: 

(p + q + ~)!(L - P - q - ~)! 

=(_l)L-p-q (p+q+P! 
(-L+p+q p! 

min{q,L + O[ 
= ( - l)L-q-q(p + V!q!(L + 1)! I~O t!(q - t)!(L + 1 (6) 

leads to another expression for IA,n' 
min{n,L+ J} 

IA,n = ( -l)L(L + 1)! I 
1=0 tIeL + 1 - t)! ' 

(5') 

where the abbreviations, 
(L+I+A)/2-n 

J ~ \) = I ( - l)P 
P=O 

x ( - (L + 1-A)/2 + n + p - !)! 
pl«L+l+A)/2-n-p)l( -L+p !+t)! 

(7) 

and 

J<2) = ± ( _ 1)q (1- n + q - P! 
t q= t (q + !)!(n - q)!(q - t)! 

(8) 

have been used. Therefore if either of J ~ I) and J }2) vanishes, 
so does their product. Now we carry out the summation of 
Eqs. (7) and (8). Equation (7) is rewritten as 
J}I) = ( - 1) (L+I-A)/2+n 

(L+I+A)12-n[ (L+I-A 1) 
X I pI - n - - - P ! 

p=O 2 2 

(
L+I+A )( 1 )]-1 X 2 -n-p! -L+t- 2 +p! . 

(7' ) 
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Putting (L + l-A)/2 - n - !=#, (L + I +A)/2 - n 
=p, and -L + t - !=v-p in Eq. (Bl) of Ref. 5, one 
finds that J.l + v = I - 2n + t - 1 and J.l + v - p = ( - L 
+ l-A)/2 - n + t - 1. Since t<;n and A>IL -11. obvi-

ously J.l + v - p < O. Therefore from the note on Eq. (B 1) of 
Ref. 5, if J.l + v = 1 - 2n + t - 1 >0, J ~ I) vanishes. Other
wise, i.e .• for 2n - I - t>O, J} I) is summed to 

J;I) = ( - l)A«L -/ + A)/2 + n - tl! 

X [(L + 1- A)/2 - n - ~)! 

X ( - L + I + A) /2 - n + t - !)! 

X(L + I +A)/2 - n)!(2n -1- t)1]-'. 

On the other hand, J?} may be rewritten as 

J?) = ( - 1)n-l 

n-t[ ( 1) XI q!n-l-t---ql 
q=O 2 

(7") 

x(n-t-q)t(t+ ~ +q}]-I. (8') 

When n - I - t - !, n - t, and t + ! are set equal to #' p, 
and v - p, respectively, in Eq. (Bl) of Ref. 5, it turns out 
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that p. + v = 2n - 1 - t and p. + v - P = n - I. Because 
p. + v = 2n - 1 - t must be larger than or equal to zero in 
order that J ~ 1) takes a nonzero value, the condition that 
p. + v - p = n - t~o is necessary for J ~2) to remain non
zero. For n - t~o, J?) is summed to 

J?) = (_1)n-1 

X (2n-I-t)! (8") 

(n -1- t - !)!(n + !)!(n - t)!(n -I)! 

Introduction ofEqs. (7") and (8") into Eq. (5'), and then 
insertion of the relation 

(L - 1 + A )/2 + n - t )! 
(n -1- t - !)!(n - t)! 

= ( L + ~ + A + ~ )( L - 1
2
+ A»)r 

"-I[ (L+I+A 1 ) XL p! +--p! 
p=o 2 2 

x(n-t- p ){ -1- ~ +p)rr
1

, (9) 

which is derived by setting fJ'= (L + 1 + A)/2 +!, 
v=n -1- t -!, andp=n - t in Eq. (B1) of Ref. 5, into 
the resulting equation lead to 

I =(-1)" (L+l)!(L+I+A)/2+!)!(L-I+A)/2)! 
A," (L + 1- A)/2 - n - ~)!(L + I + A)/2 - n)!(n + ~)!(n - /)! 

n [ (L + I + AI) ( 1) ] -1 XL p! +--p! -I--+p ! 
p=o 2 2 2 

min{n - p,L + l} [ ( _ L + 1 + AI) ,] - 1 
X L t!(L+l-t)!(n-p-t)! -n--+t!. 

1=0 2 2 
(5") 

Letting max{n - p, L + 1}=p., min{n - p,L + l}=v, and ( - L + 1 +A)/2 - n - !=v -p in Eq. (B1) of Ref. 5, one 
finds that the sum over t is equal to 

(L + 1 + A)/2 - P + !)! 
(L + 1)!( - L + 1 +A)/2 - P - !)!(n - p)!(L + 1 +A)/2 - n + !)! 

Substituting this result into Eq. (5"), we arrive at 

I =(-1)" (L+I+A)/2+!)!(L-I+A)/2)! 
A," (L + 1- A)/2 - n - !)!(L + 1+ A)/2 - n)!(n + !)!(n -/)!(L + 1+ A)/2 - n + !)! 

" [(-L+I+A 1) ( 1 )]-1 X L p! - - - p !(n - p)! - 1-- + P ! . 
p=o 2 2 2 

(5"') 

If ( - L + I + A)/2 -!, n, and -I-! are set p., p, and v - p, respectively, in Eq. (Bl) of Ref. 5, then p. + v 
= ( - L - I + A) /2 + n - 1 and p. + v - p = ( - L - I + A ) /2 - 1. Since A <L + I, obviously p. + v - P < O. Therefore 

from the note on Eq. (Bl) of Ref. 5, ifp. + v = ( - L -I + A)/2 + n - 1>0, the sum in Eq. (5'") vanishes. Otherwise, i.e., 
for (L + 1- A)/2 - n>O, the sum proves to be equal to 

(-1)" (L+I-A/2»)! 
( - L + I +A)/2 - !)!(n -1- !)!n!(L + I-A)/2 - n)! 

Connecting (L + I - A) /2 - n >0 with the condition 
n - t~o in order that J ~ 1) J?) takes a nonzero value, we find 
that the permissible values of n are limited to the range from I 
to (L + I - A) /2. On the other hand, A runs from IL - II to 
L + I by step 2, and thus the value of A which gives lA,,, a 
nonzero value is restricted only to L - I, Therefore the al
lowed value of n is found to be only I. 

Consequently, Eq. (5'") is rewritten as 

I =8 8 (L+P! 
A," A,L -I ",I (l + !)!(L -I + !)! 

= 8 8 2(2L + 1)! l!(L -I)! 
A,L-I n,1 (21 + 1)!(2L - 21 + 1)! L! 

(5"") 
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Then introduction of the last equality of Eq. (5"") into Eq. 
(3') yields the single-term expression for VaL (r,a), 

vaL (r,a) =8A,L_A1T( _1)L- laL 

X 
(2L + 1)! I!(L -I)! I 

--~-...:..........:.......-- ----.:-----=~s. 

(21 + 1)!(2L - 21 + 1)! L! 
(3") 

Further, by putting Eq. (3") and the expression for 
C(l L -I L; 00), 

C(l L - IL; 00) 
= [(2/)!(2L - 2/)!I(2L)!] 1/2L !ll!(L -I)!, (10) 

in Eq. ( 1), we obtain a simple expression for R L 

X yr(OR,tPR): 
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L M+L-I 
RLYf(OR,,pR) = L L (_1)L-1 

I=Om=M-L+1 

[ 
41T(2L + 1)' ] 112 

X (21 + 1)!(2L - 2; + 1)! 

X C(/ L - I L;m M - m) 

X rY'!'( O,,p )aL -IYf ~t( Oa ,,pa ). (11) 

This is no other than the expansion formula of a solid har
monic.3 Here note that, if the new origin is placed at the 
position displaced from the old origin by a (in Antone's no
tation of Ref. 1, r 2)' not - a, as done in Ref. 1, the sign 
(-I)L- / inEq. (11) does not appear. 

When feR) is a power of R, V[) .. L (r,a) can be also ex
pressed by Eq. (27) of Ref. 6, which is derived by integrating 
the right-hand side ofEq. (5) of Ref. 2 in the different order 
from the order in which the integration led to Eq. (2). The 
use of Eq. (27) of Ref. 6 leads directly to Eq. (11), which 
should be noted. 

III. RELATION BETWEEN THE EXPRESSION FOR THE a 
FUNCTION DERIVED FROM THE FORMULA OF 
SILVERSTONE AND MOATS AND THE ONE GIVEN BY 
ANTONE 

Comparing the expansion formula [Eq. (1)] of Silver
stone and Moats with Eq. (1) of Ref. 1, which defines the a 
function, denoted by a(I,A,L,r,a/) [in Antone's notation, 
a(/I,/2,L,rl ,r2,f)]' one finds that generally the a function 
can be also expressed in the form 

a (/,A,L,r,a,j) 

= [(21 + 1) (U + 1 )/417"(2L + 1)] 1/2C(IAL;0 0) 

X VIAL (r,a). (12) 

This is the very result obtained by applying the Fourier
transform convolution theorem to the integral over.o l in Eq. 
(12) of Ref. 1, which gives an integral form of the a function, 
and by then using the orthonormality of the spherical har
monics defined in the angular coordinates .02• 

In Ref. 1 the explicit form of the a function is given by 
Eq. (23) or (24). Its use is valid for a general case, but 
inappropriate for the special case where r2 = (r2, 0, ,p2) [in 
the present notation a = (a, 0, ,p a ) ] • In the special case, the 
choice of m = Land m l = II (in the present notation, 

I 

a(A)(1 2,L ra f) = (_ 1)IL-/1 (L< + !)! 
". '" (2L < + I)! 

M = Landm = I) inEq. (I) of Ref. 1, which led toEq. (12) 
of Ref. 1, cannot be allowed unless L = II (in the present 
notation, L = /), because of relation (6) of Ref. 1. Further
more, in the above case, such an integral over O2 (in the 
present notation Oa) as seen in Eq. (34) of Ref. 1, never 
yields because O2 = 0, and, therefore, the relation expressed 
by Eq. (30) of Ref. 1, cannot be utilized. This means that, in 
the special case, a(/I,/2,L,71,r2,f) remains nonzero even if 
12=1=L -II (in the present notation, A =l=L -I) as in many 
other cases. 

In the above case, the a function derived in Antone's 
manner, may be expressed as 

a(A) (/,A,L,r,a,j) 

= (41TI(U + 1) )1/2 [C(/AL;L < 0»-1 

X 117 sin ° dO fl7 d,p 

X Y~~ (O,,p)f(R) Y~«OR',p), (13) 

where L < denotes the lesser of L and I. Here the superscript 
(A) has been attached to the symbol a to distinguish the a 
function given by Eq. (13) from the one expressed by Eq. 
(12). In any case the expression for thea function, Eq. (12), 
is unchanged unless the form of f(R) varies. On the con
trary, the expression derived in Antone's manner, Eq. (23) 
or (24) of Ref. 1, varies case by case. For instance, 
a(A)(/,A,L,r,a,j) expressed by Eq. (13), is not equal to 
a(/,A,L,r,a,j). The relation between them can be obtained 
by applying the Fourier-transform convolution theorem to 
the integral in Eq. (13). It may be written as 

a(A) (/,A,L,r,a,j) 

L + I (2!t + 1)112 C(/p,L;L < 0) 

= J.t=2~_/1 U + 1 C(/AL;L< 0) 

Xa(/,p"L,r,a,f)· (14) 

Needless to say, the explicit form of a(A) (/,A,L,r,a,j) can be 
obtained by carrying out the same procedure as used in Ref. 
1. The course is, however, very complicated. In contrast, 
introduction of the explicit form of C(/p,L; 00) and the 
expression for VIAL (r,a) given by Eq. (2), into Eq. (12) leads 
to the explicit form of a(A) (/,A,L,r,a,j) more easily. It is 
written as 

X [417" (21 + I)(L + I-A)!( -IL -II +A)!(L + I +A + I)! ]112 
(U + 1)(IL -II +A)! 

L+IL+I-K (L-K-P!(/-k-P!(-L< +K+k-!)! 

XK~O k~O K!k!(L+I-K-k)! 

(
r)2k-I- 1i r

+
a 

(R)2K-L+1 
X - dR - feR). (15) 

a Ir-al a 

It goes without saying that the respective sums of 
C(/AL;MO)((U + 1)/41T)1/2a (A)(/,A,L,r,a,j) and 
C(/ A L; MO)((U + 1)/41T)1/2a (/,A,L,r,a,j) over A prove 
to be equal to another a function (lIr)al (f L M II) which 
has been defined by Eq. (2.1) of Ref. 7. 
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I 
IV. CONCLUDING REMARKS 

Certainly, in the case of f(R) = R L, Antone's expres
sion for the a function, Eq. (23) or (24) of Ref. 1, has the 
advantage of being reduced visibly to the expansion formula 
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of a solid harmonic over the expression derived from the 
formula [Eq. (12)] of Silverstone and Moats. But the for
mer expression is rather complicated, and so, in calculation 
on the electronic properties of molecules and solids, it does 
not seem to be more convenient than any other appearing in 
the literature, because the radial part of the atomic functions 
used frequently in the calculation, never take the form of R L. 

On the other hand, the latter expression is very simple, 
thanks to the application of the Fourier-transform convolu
tion theorem for overlap integrals. No more simplified 
expression than it can be obtained unless the explicit form of 
f(R) is given. Comparison of the forms of the two expres
sions leads readily to the conclusion that the latter expres-
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sion is much more compact than the former. Since the sim
plicity of the latter expression is independent of the form of 
f(R), it can be expected to be utilized conveniently when
ever one needs the calculation of the a function. 
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3For example, see p. lSI ofD. M. Brink and G. R. Satchler, Angular Mo
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4For example. M. E. Rose. Elementary Theory of Angular Momentum (Wi
ley, New York, 1957). 

'N. Suzuki, 1. Math. Phys. 26, 3193 (1985). 
OK. G. Kay. H. D. Todd. and H. J. Silverstone, J. Chern. Phys. 51, 2359 
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7N. Suzuki, J. Math. Phys. 25. 1133 (1984). 
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By applying the method of separation of variables a particular class of solutions, depending on 
the four variables (xp ) of Yang's equation in the R gauge for self-dual SU(2) gauge fields on 
Euclidean four-dimensional flat space, is obtained. These solutions are parametrized by a 
particular form of the fifth Painleve transcendent. For a specific choice of certain constants, 
there is degeneration, and the solutions functionally depend on elementary functions. 

I. INTRODUCTION 

Yang l has reduced the system of equations for self-dual 
SU (2) gauge fields on Euclidean four-dimensional flat space 
to the following equations: 

~(~st +~1/1i) -~s~t -~1/~1i +'I's'Pt +'I'1/'P1i =0, 

(la) 

~('I' st + 'l'1/1i) - 2'1' s~t - 2'1' 1/ ~1i = 0 

(and the complex conjugate), (lb) 

where ~ denotes a real function, 'I' a complex function of the 
variables S, t, 1], Tj, the overbar denotes complex conjuga
tion, and 

v2S = XI + be2 , v'11] = X3 - ix4 • (2) 

Various solutions to these equations have already been pro
posed in the first place by Yang himself, thanks to an appro
priate ansatz. Ray2 carrying on this way has broadened the 
scope on the results established by Yang. 

By a method founded on the separation of variables we 
have also obtained one class of solutions connected with par
ticular form of the fifth Painleve transcendent. 3 The aim of 
the present paper is to show that the same process can be 
extended in a such manner that the solutions calculated de
pend effectively on the four variables xp (X I ,x2,x3,x4). We 
can, following Takeno,4 give another formulation of the sys
tem (1), useful for the development of the process. Let 

~a<l> - (V~)2 + V'I'oV'P = - i&'('I','P) , (3a) 

~a'l' - 2V~oV'I' = 2if!lJ ('I',~) and c.c., (3b) 

where V and a are, respectively, the gradient and Laplacian 
operators in the Euclidean four-dimensional flat space met
ric and the symbol f!lJ is defined by 

f!lJ (a,{3) = (aX/3X2 - aX2PXl) - (aX3 Px. - a X'PX3 ) (4) 

for each pair of functions a and P of the variables 
(X I ,x2,x3,x4). The system (3a) and (3b) can be written in 
terms of real functions by means of the change 

'I' = X exp(iA) , (5) 

which leads to 

~a~ - (V~)2 + (VX)2 + X2(VA)2 = 2Xf!lJ (A,X) , 

~[aX - X(VA)2] - 2VxoV~ = - 2Xf!lJ (A,~) , 

(6a) 

(6b) 

(6c) 

We observe that if the phase function A is taken as constant 
and if f!lJ (X,~) = 0 the system is reduced to 

(Re ~)a~ = (V~)2 and c.c., (7) 

where it is set 

(8) 

In the case where the functions ~ and X depend only on the 
variables p== (xi + X~) 1/2 and z = X3, (7) is a form of the 
Ernst system.s The link between the Ernst system and par
ticular solutions of the SU(2) self-dual gauge fields equa
tions has been well noted by Witten.6 

The class of solutions of (6a)-(6c), which we propose 
to determine here, is of the more general type; they involve a 
nonconstant phase function and depend on the variables 
(P,x3'X4)· 

II. DETERMINATION OF THE SOLUTIONS 

RESEARCHED 

A. General analysis 

Following the method of separation of variables em
ployed here, we investigate solutions of the system (6a)
( 6c) in the form 

~(Xp) = F(p )K(X3,x4) , 

'I' (xp ) = G(p)L (X3,x4) , 

or, in terms of purely real functions as in Ref. 3 

~(Xp) =!(P)U(X3,X4) ' 

X(xp ) = [g2(p) +h2(p)] 1/2U(X3,X4) ' 

A(Xp ) = arctan(g/h) + V(X3,x4) , 

(9) 

( 10) 

wheref, g, and h are functions with real values of the variable 
p == (xT + x~ ) 1/2 while U and V are also real functions of 
which will be fixed in the next development. The insertion of 
these expressions in (6a)-(6c) gives 
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f(f" + (1/ p )/') - /,2 + g,2 + h ,2 + P [ U - I (UX]X] + UX.x.> 

_ U- 2(U 2 + U 2 )] + (..2+h2)[(U- IU - V )2+ (U-IU + V )2] =0 (lla) 
X3 %4 IS X3 %" X.. X3 ' 

f[gg" + hh " + (l/p)(gg' + hh')] - 2/,(gg' + hh ')f(g'- + h 2) [U-I(UX]X] + UX4X.) - U- 2(U!] + U!.>] 

-f(g'-+h 2) [(U-IUX] - Vx.>2+ (U-IUx• + V!)2] =0, (llb) 

hg" - zh" + (1/p)(hg' - gh') - 2(/,//) (hg' - gh') - (g'- + h 2)( VX]X] + Vx.x.) = 0, (llc) 

with the notations/, = df /dp, g' = dg/dp, .... 
This last equation can be separated only if the function 

V(X3,x4) is bilinear in X3 and X 4• However, the examination 
of the separability of the previous Eqs. (11a) and (llb) 
shows that in fact the functions U and V must necessarily be 
written as 

(12) 

V=cx3 +dx4 , (13) 

a, b, c, and d being real constants (nonzero). It follows from 
this result that by a simple linear combination of (11a) and 
( 11 b) we may deduce the following equation: 

f [ (jJ" + gg" + hh ") + (1/ p)( jJ' + gg' + hh ') ] 

- f(/,2 - g,2 _ h '2) - 2/,(gg' + hh') = 0, 

which leads to the first integral 

(f2 + g'- + h 2)' = (A /p)f2 (A #0) , (14) 

where A is a constant of integration. Equation (11 c) also is 
easily integrated under the form 

hg' - gh' = (B /p)f2 (B #0) , (15) 

where B is a new constant of integration. 
Now it is suitable to take these results into account in 

Eq. (lla), which, consequently to (12) and (13), can be 
written as 

fV" + ~ /') - /,2 + g'2 + h ,2 

+ (g'- + h 2)[ (a - d)2 + (b+ C)2] = o. (16) 

The effective insertion of (14) and (15) in this equation 
leads, after a rather tedious computation, to a nonlinear dif
ferential equation of the third order governing the function 
Q=f2 + g'- + h 2. This equation is reducible to one of the 
second order for the function X = Q ' /Q, and it is written 

X" + ..!..X, _ [..!.. _ 1 ]X'2 
P X 2(A -X) 

+X2 [~+A-X] 
p2 A -X 2 

+ 2[ (a - d)2 + (b + c)2](A -X) = o. (17) 

Making the changes 

w = I-X /A, with A #0 and x =p2. (18) 

We finally find the equation 

d 2W +..!.. dw _ (_1_ + _1_)(dw)2 
dx2 X dx 2w w-l dx 

775 

(1 - W)2 (A 2 B 2) - -w+-
2x2 4 w 

(a - d)2 + (b + C)2 w = 0, 
2x 
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(19) 

I 
in which we recognize a particular form of the nonlinear 
differential equation defining the fifth Painleve transcen
dent.7 With the values of the parameters 

A 2 B2 
a= -8' {3= -2' 
r = - ~ [(a - d)2 + (b + C)2], 8 = 0, (20) 

with a - d and b + c#O . 

Comparing this with the previous work3 we see that the de
pendence on X4' introduced here, does not change the par
ticular form of the Painleve equation that we obtain in both 
situations. The difference lies in the expression of the param
eter r which involves the constants a, b, c, and d, which 
appear in (12) and (13). From their respective diverse val
ues various original particular cases will result which will be 
examined subsequently. 

Returning to Eqs. (14) and (15), it is possible to obtain 
functions J, g, and h parametrized by w (P), the Painleve 
transcendent defined in (19). We then have 

f= [AO - w) ]1/2 exp [ AO; w) dp, 

and 

i1' AO w) g'- + h 2 = Aw exp - dp, 
Po P 

h + ig = (g'- + h 2)112 exp{i [ B(~: w) dP} . 

Now we are in possession of all elements to give entire ex
pressions for the functions <I> and'll, which were introduced 
in the beginning, as functionals of the fifth Painleve tran
scendent defined by (19); we find the following results: 

<I> (xI' ) = [AO - w) ]1/2 

xexp{ax3 + bX4 + [ A (1; w) dP} , (21) 

'II (xl' ) = (Aw) 1/2 exp{ (a + ic)x3 + (b + id)x4 

+ [(~ +i~)l~wdP}' 
for the general case 

A and B #0, a,b,c,d #0, 

a - d #0, b + c#O. 

(22) 

Because of the presence of the square roots the result is valid 
only for the intervals of the variable p where w (p) is such as 

A>Aw>O. 
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B. Particular cases 

They correspond to the particular values of the con
stants A, B, a, b, c, and d that we excluded in the above 
analysis. 

The three cases defined by (i) A = 0, B :;60; (ii) A :;60, 
B = 0; and (iii) A = B = 0 could be discussed in a similar 
manner to that used in the analogous cases encountered in 
Ref. 3. We observe that the corresponding solutions cI>(x,,), 
'II (xl') still depend on the particular forms w(p) ofthe fifth 
Painleve transcendent-without any possible degeneration
theparameterr= - [(a-d)2+ (b+c)2]12beingbyas
sumption nonzero. 

The expression of this parameter in function of the con
stantsa, b, c, andd, introduced in (12) and (13), is a specific 
aspect of this study in comparison with Ref. 3. Indeed we see 
that r = 0, when a = d and b = - c and, in this case, by 
means of the change of variable 

u = log x ¢:> u = log p2 , (23 ) 

Eq. (19) (with r = 0) can be brought back to the form 

d
2
w (1 1 )(dW)2 

du2 - 2w + w - 1 du 

- (1_W)2 -w+- =0. (
A 2 B2) 

8 2w 
(24) 

We recognize here a particular form of the equation of 
the type 38 of the Painleve and Gambier classification.7 Thus 
the following first integral can immediately be written 

(~:r = (W_l)2(~2 w2+2KW-B 2), (25) 

where K is a new constant of integration. To pursue the cal
culation it is necessary to consider the trinom 

(A 2/4) + 2K _ B 2 • 

Several situations occur following its value. We obtain the 
following results: If 

(A2/4)+2K-B2>O, 

we have 

A(U - uo) = log[,uw + v 

- (A 2/4)w2 + 2Kw - B2)1/2]1(W - 1) 

(26) 

with the notations 

A==(A4
2 

+2K_B 2)1I2, 
K_B2 

V 
A 

if 

(A 2/4)+2K-B 2<O, 

. {(A
2
/4+K)(W-1)- A i} 

A1(U - uo) = arCSlD (K 2 +A 2B2/4)1/2Iw _ 11 ' (27) 

with Al == [ - (A 214 + 2K _ B 2) ] 1/2 ; 

orif 
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A 2/4+2K-B 2=O, with A 2/4+K:;60, 

U - Uo = - [«A 2/4)w2 + 2Kw -A 2)1/2 

X(A 2/4 + K)(w - 1»)-1] (28) 

or 

U-U = 2E (A
2
/4)W+B

2
)1/2 

o B2+A2/4 (w-l) , 

E== ± 1, (28') 

where uo==logp~ is an integration constant. 
In these formulas the function w, researched, appears 

under the implicit form. In theory, by inversion, we could 
obtain the explicit formulations. However, the latter would 
be rather complicated and consequently not very evocative. 
The last particular case, whereA 214 + 2K - B 2 = 0 gives us 
an explicit result which is easily obtained: 

w = (A 2/4 +B2)2(U - UO )2 + 4B2) 

X(A 2/4 + B2)2(U _ Uo)2 _ A 2)-1 , 

with U = logp2 . (29) 

The expressions of the functions cI>(x,,) and 'II (x" ) are for
mally given by the formulas already noted in (21) and (22) 
by taking into account the particular situation investigated: 

r=O, with a=d and b=c. 

In so doing, we have the result 

cI>(x,,) = [A(1- W)]1/2 

xexp{ax3 + bX4 + f A(1~ w) dP} , 

'II (x" ) = (AW)I/2 exp{ (a - ib)(x3 + ix4 ) 

+ iP 

(~ + iB) 1 - w dP } . 
Po 2 w P 

(30) 

(31) 

It is essential to point out that the formulas (21 ) and (22) of 
cI> and 'II are in fact parametrized by w, which is the fifth 
(nonelementary) transcendent of Painleve. Whereas here 
(r=O) the formulas (30) and (31) formally, similar to 
(21) and (22), depend on the function w which defined ei
ther by (26) or by (27), or by (29). This function is an 
elementary transcendent and, in principle, the operations of 
integration could be performed. 

IC. N. Yang, Phys. Rev. Lett. 38, 1317 (1977). 
2D. Ray, Phys. Lett. B97 (1) 113 (1980); P. K. Chanda and D. Ray, Phys. 
Rev. D 31,3183 (1985). 

3B. Uaute and G. Mareilhaey, Phys. Lett. A 93, 394 ( 1963) . 
4S. Takeno, Prog. Theor. Phys. 66,1250 (1981). 
5F. J. Ernst, Phys. Rev. 167, 1175 (1968). 
6L. Witten, Phys. Rev. D 19, 718 (1979). 
7p. Pain1eve, AetaMath. 25,1 (1902); B. Gambier, ibid. 33,1 (1909); B. F. 
Inee, Ordinary Differential Equations (Dover, New York, 1956). 

B. Leaute and G. Marcilhacy 776 



                                                                                                                                    

An example of a problem arising in a finite difference context: Direct and 
inverse problem for the discrete analog of the equation "'xx +U"'=uJ/!y 

O. Ragnisco and P. M. Santini 
Dipartimento di Fisica, Uniuersita' "La Sapienza, " Roma, Italy and Istituto Nazionale di Fisica Nuc/eare, 
Sezione di Roma, Italy 

S. Chitlaru-Briggs and M. J. Ablowitz 
Department of Mathematics and Computer Science, Clarkson College of Technology, Potsdam, New York 
13676 

(Received 7 January 1986; accepted for publication 18 November 1986) 

The direct and inverse spectral problem for the discrete analog of the equation 
"'xx + u", = ut/Iy is solved in the framework of "11 " theory. The time evolution of the spectral 
data for the simplest nonlinear differential-difference equations associated to this linear 
problem is derived. 

I. INTRODUCTION 

In recent years, there has been considerable interest in 
the study of exactly solvable nonlinear evolution equations 
by the method of the inverse scattering transform (1ST). 
The results for one-dimensional partial differential equa
tions and their discrete analogs is by now classical and cov
ered in tests on the subject. 1 On the other hand, the work 
done on 1ST for 2 + 1 dimensions has only been satisfactori
ly understood within the past few years? The prototype 
problem studied is the Kadomtsev-Petviashvili (KP) equa
tion: 

(u, + (TUUx + uxxx)x = - 3a2uyy , 

together with its associated linear problem 

ut/Iy = "'xx + u",. 

(1.1 ) 

( 1.2) 

There are two critical choices of the parameter (J': (J' = i 
(KPI); (J' = 1 (KPII). 

Manakov3 showed that KPI fits within the context of 
Riemann-Hilbert (RH) theory (i.e., it leads to a nonlocal 
RH problem). The second case, KPII, was found to lie o~t
side RH theory. It required essential use of the notion of "a " 
(DBAR) problem. We recall that Beals and Coifman,4 in 
their elegant work on systems of ordinary differential equa
tions, noted that the RH problem was, in fact, a special case 
of the more general notion of a 11 problem. The 11 problem 
gives a simple and powerful method by which the underlying 
inverse spectral problem for the KPII equation (and other 
analogous equations, like Davey-Stewardson II, modified 
KPII, ... ) can be solved. 

In this paper a discrete analog of ( 1.2) for the case (J' = 1 
is investigated. To our knowledge this is the first considera.: 
tion of a discrete multidimensional scattering problem via a 
theory. One very important observation is that fully discrete 
spectral problems virtually always require the use of a 11 ap
proach. The reason for this has to do with the fact that dis
cretizations are generally unstable ("ill-posed") as partial 
difference equations in Z2 [in analogy with problem (1.2) 
with (J' = 1 for both x and y finite]. 

Of course, the corresponding one-dimensional discrete 
problem (i.e., the finite-difference analog of the Schrodinger 

equation) has been investigated via RH methods by a num
ber of authors. S In particular, we refer to the thesis of Sanda 
L. Chitlaru-Briggs who not only considered this one-dimen
sional problem, but went beyond to study multidimensional 
problems such as the one under scrutiny in this paper. Un
fortunately, her life was prematurely cut short and her study 
had to be ended. This article is dedicated to Sanda L. Chit
laru-Briggs. 

II. THE DIRECT PROBLEM 

We investigate the linear problem 

"'(n -I,m) +B(n,m)",(n,m) +A(n,m)",(n + I,m) 

=2",(n,m+l), (2.1) 
where (n,m)EZ2

, and the "potentials" B,A - 1 vanish suffi
ciently fast as nand (or) m go to infinity. 

This problem, as well as the simplest evolution equa
tions associated with it, has been already introduced in Ref. 
6. 

It is easy to see that, when B = 0, the continuum limit of 
(2.1) is just Eq. (1.2) for ueR; to perform this limit, set 
A(n,m) = exp[a(V(n + I,m + 1) - V(n,m»)), x = na, 
y = (a/2)ma 2

, and let a ..... O: one recovers (1.2) with 
U= VX ' 

To handle Eq. (2.1), we introduce a functionp" defined 
as 

p,(n,m;z) = ",(n,m) [",(0) (n,m;z) ]-1, (2.2) 

where ",(0) is a special solution of the "bare" problem asso
ciated to (2.1) (i.e., the one corresponding toB = O,A = 1), 
given by 

",(O)(n,m;z) =z-n(z+z-I)/2)m. (2.3) 

The function p, will then satisfy the following equation: 

zp,(n - l,m;z) + B(n,m)p,(n,m;z) 

+ z-IA (n,m)p, (n + l,m;z) 

= (z+z-l)p,(n,m + 1;z). (2.4) 

Requiring that, as a function of z, p, satisfies the boundary 
condition 

lim p,(n,m;z) = 1, 
Izl- 00 

(2.5) 
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Eq. (2.4) is equivalent to the summation equation 
+00 

p,(n,m;z) = I - L G(n - n',m - m';z) 
n',m' = - 00 

x [B(n',m')p,(n',m';z) 

+z-I(A(n',m') - l}J.t(n' + I,m';z)], 
(2.6) 

where the Green's function G is defined as 

G(n,m;z) = _1_ A: dZI A: dZ2 

(21Ti)2 1;zol = I Zl 1;z,1 = I Z2 
A 

XZ~~G(ZI,z2;Z) (2.7) 

with 

(2.8) 

From its very definition, it turns out that G enjoys the follow
ing symmetry properties: 

G(n,m;z) = - G(n,m; -z), 

G(n,m;z) = - (_1)n+mG(n,m;z), 

G(n,m;'Z) = WI- nW2- mG(n,m;z), 

where ± WI' ± W2' defined as 

WI = z/z, 

W2 = (z + lI2)/(z + liz), 

(2.9a) 

(2.9b) 

(2.9c) 

(2.lOa) 

(2. lOb) 

are the simple pole singularities of G, as a function of z I and 
Z2 on the integration contours. As in the corresponding con
tinuum linear problem (1.2), these singularities are integra
ble, and by performing the integration with respect to Z2' we 
get for G the following expression, which clearly shows that 
Gis not an analytic function ofz = r exp(itp) [in Eq. (2.11), 
Zl = exp(i11I )], 

G(n,m;z) =~ (z +Z-I) -mA: dZI ~(~+ -=-)m-I 
21Tl 1;zol = I ZI Z ZI 

X {on - m) - o( ; + tp )O( - tp)[0(111 + 1T)0(2tp -111) + 0(111)0(1T + 2tp -111)] 

-O(1T+tp)O( -tp- ; )[O( -111)0(111-2tp-1T) +0(1T-111 )0(111 -2tp-21T)] 

- O(tp)O( ; - tp )[O( 1T -111)0(111 - 2tp) + O( -111)0(111 - 2tp + 1T)] 

- o( - ; + tp )0(1T - tp)[O(11I)O(2tp -1T -111) + 0(111 + 1T)0(2tp - 21T -111)]}. (2.11 ) 

The "departure from analyticity" of the function G is mea
sured by its "(1 " derivative, whose expression is the following 
one: 

':: =c(z,z)(I- (_1)n+m·)tu7w~, 

where 

c(z,z) = (i/1T)sgn(sin 2tp)(r + 1) -I. 

(2.12) 

(2.13) 

Equation (2.12) can be either derived from (2.11) by means 
of the standard formula 

E.. = ~ [rE.. + i ~], (2.14a) 
8i 2Z ar atp 

or, directly from (2.7), taking into account the distribution 
formula 

E..(_I_) = 1T~(Z-Zo). 
8i Z-Zo 

(2.14b) 

As in the continuum case, the existence of a connection 
formula betweenp, and its "(1" derivative plays an essential 
role in the method. In our case, it has the following expres
sion: 

a 
-p,(n,m;z) 
8i 

778 

=a(z)p,(n,m;'Z) + (_1)n+mp(z)p,(n,m; -z). 
(2.15 ) 
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The "spectral data" a(z), P(z) are related to the poten
tials through the formulas 

+00 
a(z) = c(z,z) L WI-

nW2- m 

n,m= - 00 

x [B(n,m)p,(n,m;z) 

+z-I(A(n,m) -1}J.t(n + I,m;z)], (2.16a) 
+00 

P (z) = - c(z,z) L ( - 1)n + mWI- nW2- m 
",m = - 00 

X [B(n,m)p,(n,m;z) 

+z-I(A(n,m) -1}J.t(n + I,m;z)]. (2.16b) 

To prove formulas (2.15), (2.16) it is sufficient to perform 
the "(1 " derivative of the summation equation (2.6), taking 
into account Eq. (2.12) and the symmetry properties (2.9), 
and then to notice that the Ihs and the rhs of (2.15) satisfy 
the same nonhomogeneous summation equation. 

III. THE INVERSE PROBLEM 

The main tool for solving the inverse problem, namely 
for reconstructing the potentials A (n,m) and B(n,m) from 
the spectral data a(z) andp(z), is provided by the general
ized Cauchy formula 
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/(z) =~Ii a/la; d~l\d;+~j /(~) d~, 
2m D ~ - z 2m TaD ~ - z 

(3.1 ) 

where D is a suitable domain in the z plane and 
I 

d~ I\d;= 2id~Rd~It;= ~R + i~I =p exp(ix»)· 
Identifying/with p" choosing D as the whole complex z 

plane, and taking into account Eqs. (2.5) and (2.15), for
mula (3.1) yields the following linear integral equation for 
p,: 

p,(n,m;z) = 1 +~Ii d~l\d; [a(~)p,(n,m;;) + (_I)n+mp(~)p,(n,m; -;)]. 
2m D ~-z 

(3.2) 

Once, through the solution of (3.2), p, is known in the 
whole complex z plane, one can easily reconstruct the poten
tials through the formulas 

B(n,m) =p,(i)(n,m + I) - p,(l)(n - I,m), 

A(n,m) = 1 +p,(2)(n,m + 1) _p,(2)(n -I,m) 

(3.3a) 

+ P,~!~m) (p,~!)- I,m) - P,~!~m + 1) ), (3.3b) 

where p,(i) and p,(2) are the leading terms in the asymptotic 
expansion of p, around infinity, namely 

p,(l)(n,m) = lim z{jt(n,m) - 1), 
Izl-oo 

(3.4a) 

p,(2)(n,m) = lim r{jt(n,m) - 1 - [p,(l)(n,m)/z]). 
Izl- 00 

(3.4b) 

In terms of the spectral data, they read 

p,(1)(n,m) = - ~ Ii d~ I\d; [a(~)p,(n,m;;) 
2m D 

+ ( - I)" + mp(~)p,(n,m; -;)], (3.Sa) 

I 

~-----------------------------------

p,(2)(n,m) = - ~Ii d~ I\d;{~ [a(~)p,(n,m;;) 
2m D 

+ ( - I)n+mp(~)p,(n,m; _ ;)]}. 
(3.Sb) 

IV. SOME ASSOCIATED EVOLUTION EQUATIONS AND 
THE CORRESPONDING TIME EVOLUTION OF THE 
SPECTRAL DATA 

The simplest nonlinear differential-difference equations 
solvable through our 1ST scheme arise as compatibility con
ditions between (2.1) and 

t/I,(n,m) = -z-It/I(n,m) + G(O)(n,m)t/I(n + I,m), 

G(O)(n,m): = IT A(n - j,m + j) • 
j=oA(n-l-j,m+j) 

t/I, (n,m) = - z-2t/1(n,m) - ~ G (i)(n.m) 

X [t/I(n,m) - 2t/1(n + I,m + 1)], 

G (i)( ). = n°O A(n - j,m + 1 + j) n,m. , 
j = 0 A (n - 1 - j,m + j) 

( 4.1a) 

( 4.1b) 

xt/l(n,m) + G(2)(n,m)t/I(n + I,m + 1) + G(3)(n,m)t/I(n + I,m + 3), 

G(2)(n,m): = IT A(n - j,m -: 1 + ~) - ~ f [A(n - 1 - j,m + 2 + j)G(3)(n - 2 - j,m + j) 
j=oA(n-l-j,m+j) 4 j =o 

-A(n- j ,m+3+j )G(3)(n-l-j ,m+l+j )][ IT A(n-j -:s,m+2+j+:s) ]-1, 
• = 0 A (n - 1 - j - s,m + 1 + j + s) 

G (3)( )._ n°O A(n+l-j,m+3+j) n,m.- . 
j=O A(n -j,m +j) 

The corresponding evolution equations read 

A,(n,m) =B(n + l,m)G(O)(n,m + I) -B(n,m)G(O)(n,m), 

B,(n,m) = G(O)(n,m + 1) - G(O)(n - I,m), 

A, (n,m) = -! A(n,m)[G(1)(n - I,m) - G(i)(n + I,m)], 

B,(n,m) = 0, 

A,(n,m) = - !A(n,m)[G(2)(n - I,m) - G(2)(n + I,m) 

+ !A(n,m + 2)G(3)(n -I,m) - !A(n + 2,m + 2)G(3)(n + I,m)], 

B,(n,m) = O. 

(4.1c) 

(4.2a) 

(4.2b) 

(4.2c) 

Equation (4.2a) is clearly a two-dimensional version of the 
Toda lattice,7 which is immediately recovered, by assuming 
that A and B do not depend on m. 

Equation (4.2b) is in tum a two-dimensional version of 
the infinite Volterra system,8 and finally Eq. (4.2c) is a dif
ferential-difference analog of the KPII equation. 

The evolution of the spectral data is derived from for
mulas (4.1) by letting n,m -+ 00 and comparing the "a" de
rivative ofEqs. (4.1) with the time derivative of (2.15). To 
perform this comparison one has to take into account that, as 
it can be seen from (2.6), for large n and m p, goes to a 
constant value as z approaches O. 
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The corresponding results are the following. 
(i) For Eq. (2a) 

at(z) = (Z-l -z-l)a(z); 

/3t(z) = - (Z-l +Z-I)/3(Z). 

(ii) For Eq. (2b) 

at (z)la(z) = /3t (z)I/3(z) = Z-2 - Z-2. 

(iii) For Eq. (2c) 

at (z)la(z) = /3t (z)I/3(z) 

= U (z + Z-I)2(1 - Z-2) 

_ (Z+Z-I)2(1_z-2)]. 

A more systematic investigation of the class of evolution 
equation associated with the linear problem (2.1) is con
tained in Ref. 9, where the bi-Hamiltonian structure of this 
class is explicitly derived. 
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Eigenvalues and eigenvectors of the finite Fourier transform 
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The eigenvalues and eigenvectors of the n X n unitary matrix of finite Fourier transform whose 

j, k element is (lI.Ji)exp[ (21T'i/n)jk ], i =...[=t, is determined. In doing so, a multitude of 
identities, some of which may be new, are encountered. A conjecture is advanced. 

I. INTRODUCTION 

The problem of diagonalizing the n X n unitary matrix 

Ajk = (lI.Ji)exp[ (21T'i/n)jk], i =...[=t, 
arises in many contexts and has been studied extensively. 1-3 

The eigenvalues of A were determined by Schur l to compute 
the trace of A or the quadratic Gauss sum. 1.2 We present in 
Sec. II a simple argument to recover the eigenvalues from the 
trace. 

In spite of the aburidant literature3 concerning the ei
genvectors of A, the situation is not equally satisfactory. We 
review briefly in Sec. III some known facts needed later. 
Section IV gives still another set of eigenvectors of A. This is 
the discrete analog of the continuum case where Hermite 
functions are their own Fourier transforms. One thus has an 
infinity of eigenvectors of A, only n of which are linearly 
independent, resulting in many nontrivial identities between 
infinite series involving Hermite functions over discrete 
points. 

A conjecture is advanced. 

II. EIGENVALUES OF A 

To find the eigenvalues of A we note that 

(A 2)jk = 1.-"il exp(21T'i /(j + k») 
n 1=0 n 

= {I, if j + k = 0 mod n, 
0, otherwise, 

(2.1 ) 

A 3=A*, A 4 =1, A 4 +j=Aj, j=I,2, ... , (2.2) 

so that 

trA 4j+2=!(3+ (-1)"), j=0,1,2, ... , (2.3) 

trA 4j+3=trA*, j=0,1,2, ... , (2.4) 

and according to Gauss (see Ref. 1), 

trA =- L exp..!!!..l =- (1 +i){1 + (-i)"}. 1 ,,-I (2') 1 
.Ji j=O n 2 

(2.5) 

Consequently, 

" tr AS = 1 + L (- i)ks. (2.6) 
k=2 

Equation (2.6) is true for any integer s, but we need it only 
for s = 1,2, ... ,n to conclude that the eigenvalues of A are 

a) Member ofC. N. R. S. 

1,( - i)2,( - i)3, ... ,( - i)". (2.7) 

Hence the mUltiplicities of the eigenvalues 1, - 1, i, and - i 
are, respectively, [(n+4)/4], [(n+2)/4], [(n+ 1)/4], 
and [(n - 1)/4], where [x] is the largest integernot greater 
thanx. 

III. EIGENVECTORS OF A 

Let us write 
4 

A = L ijB(j) =iB(1) -B(2) -iB(3) +B(4), 
j=1 

(3.1 ) 

where 

B(1) =~+i(l-I'), B(2) =!C+i(l+I'), 

B(3)= -~+i(l-I'), B(4)=!C+l(l+I'), (3.2) 

Cjk = (1I.Ji)cos[(21T'/n)jk], 

Sjk = (lI.Ji)sin[ (21T'/n)jk ], 

~k = 8j,k' I;k = 8j, _ k' 

(3.3 ) 

(3.4) 

The Kronecker symbol8j , _ k stands for 1 or 0 according to 
whetherj = - k mod n orj::j; - k mod n. 

It is straightforward to verify that 

C 3=C, S3=S, (3.5) 

and 

B(j)B(k) = B(j)8j,k' j,k = 1,2,3,4. (3.6) 

Thus (3.1 ) is the decomposition of A into its principal idem
potents4 (projectors) and 

(3.7) 

so that the nonzero columns of B (j) are the eigenvectors of 
A with the eigenvalue i J. 

TheeigenvaluesofCorSare ± 1 orO [Eq. (3.5)] and 
thoseofB(j), anyj, are 1 orO [Eq. (3.6)]. Denoting by 
m (A,M) the multiplicity of the eigenvalue A ofthematrixM, 
one has 

m(1,C) = m(I,B(4») = m{1,A) = [(n + 4)/4], (3.8) 

m( - I,C) = m(I,B(2» = m( - I,A) = [(n + 2)/4], 
(3.9) 

m(1,s) = m(I,B(1») = m(i,A) = [(n + 1 )/4], (3.10) 

m( - I,s) = m(I,B(3») = m( - i,A) = [(n - 1)/4]. 
(3.11 ) 
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The number of linearly independent column vectors of any 
matrix is the number ofits nonzero eigenvalues; in particular 
that of B(j) is m(I,B(j)j,j = 1,2,3,4, and its value is given 
above in each case. 

To orthogonalize the columns of B(j) we note the fol
lowing simple f~cts. If a real symmetric matrix B satisfies 
B 2 = B, then the eigenvalues of B are 1 or 0; B is positive 
semidefinite; its diagonal elements lie between ° and 1, i.e., 
O<Bjj < 1; its trace, an integer, is the number of its linearly 
independent columns (or rows); ifBjj = Oor 1, thenB}k = ° 
for j=/=k. Moreover, if BII =/=0, then adding to the k th col
umn, for k = 2,3, ... ,n, a constant multiple (depending on k) 
of the first column we can replace its (l,k) element by zero. 
Thus 

[
BU 

B- B 
il 

;,], 
where forj,k = 2,3, ... ,n, we have 

B jk = Bjk - BljB1k1Bll · 

Using the relation 
'I 

(3.12) 

(3.13) 

L BikBil = Bkl , (3.14) 
}=I 

one easily verifies the following facts: (i) B' is real symmet
ric; (ii) B'2 = B'; (iii) tr B' = tr B-1; and (iv) the first 
column of B is orthogonal to any column of B', i.e., 

'I 

L BjlBjk =0, k=2,3, ... ,n. (3.15) 
}=2 

Since B' has the same properties as B, we can repeat the 
process with any nonzero diagonal element of B'. At each 
repetition we separate one more nonzero column, orthogo
nal to the earlier ones, and decrease the trace by unity. Ulti
mately we will be left with a zero matrix. 

To summarize, the set of eigenvectors of A for the eigen
value i} is the set of m( 1,B ( j) ) linearly independent columns 
of B (j), which can be orthogonalized by a simple recursive 
procedure. 

IV. EIGENVECTORS OF A; ANOTHER APPROACH 

Let 
co 

Fjk =Fjk(n) = L e- (11/n)(pn+J)' 

p= - 00 

where 

Hk(x) =~( - ~re-x' 
['1/21 nl( l)m 

= L . - (2x)n-2m (4.2) 
m=om!(n-2m)! 

is the k th Hermite polynomial. We will show that 
'I 

L Aj,F'k = ikFjk. (4.3) 
1=1 

i.e., a nonzero Fjk is an eigenvector of A with the eigenValue 
t. 
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Since Fjk considered as a function of j is periodic with 
period n, we have the Fourier expansion 

00 (211'i .) Fjk = L a,kexp -lj , 
1= - 00 n 

with 

a
'k 

=J.. (n e-(211'iln)lx f. e (1I'ln)(pn+x)' 

nJo p=-oo 

XHk (f? (pn +X»)dX. 
Introducing the variable y = ~211'ln (pn + x) and noting 
that exp(211'ilp) = I,one obtains 

1 00 i(P + 1),f2iiii ( 1 2 
a'k =-- L exp --y 

~ 211'n p = - 00 p,f2iii1 2 

-ilYPHk(y)dY 

=___ exp __ y2 1 1 f"" ( 1 ) 
[ii.,fi1i - 00 2 

XHk(Y)exp( ilypdY 
= in ( -i) kexp( - : 12) H k (f? I) . 

In the last step we used thefactthatexp( - !X2
) Hdx) 

is its own Fourier transform. (See. for example. Ref. 5). 
Thus 

Fjk = ( - i)k_l_ f. e - (l7/fI)l' + (21Tilfl)/jHk( fIi. I) 
[ii 1= -00 'J n 

1 n 00 = ( - i)k_ r e(211'iln)/j r e - (1I'/n)(pn + I)' 

[iil=1 p=-eo 

XHk(f? (pn + l)), (4.4) 

which is Eq. (4.3). 
From (4.3) and the symmetry of A we deduce by the 

usual argument that 
'I r FjkFjI = 0, if jk =/= i, ( 4.5) 

j=1 
i.e., if k =/=1 mod 4. Eigenvectors corresponding to distinct 
eigenvalues are orthogonal. 

Now Eq. (4.3) is valid for any k>O, while the eigenval
ues of A are finite in number, namely 1, ( - 0\ k = 2.3 ..... n. 
Thus we have to choose n values of k such that Fjk are linear
ly independent. and if possible express the other Fjk in terms 
of them. When n is even. the Fjk are linearly dependent for 
k 0,1,2, ... ,n - 1, as we will see below. Therefore we make 
the following conjecture. 

Conjecture 4.1: The Fjk are linearly independent for the 
following values of k: 

k = 0,1,2, ... ,n - 1, if n is odd, 

and (4.6) 

k = 0,1,2, ... ,n - 2,n, if n is even. 
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To make sure of the linear independence of the Fjk' 
one should show that their determinant det [ Fjk ] , 
j = O,I, ... ,n - 1, k = O,I, ... ,n - 2, 2[nI2], is nonzero. Re
placing p by - p - 1 in Eq. (4.1) one sees that 

(4.7) 

Hence for k odd FOk = 0 and, in case n is even, Fn/2.k = O. In 
the determinant [Fjk] add row n - j to row j and then sub
tract !Xrow j from row n - j for j = 1,2, ... ,[ (n - 1)/2]. 
This factorizes det [ Fjk] into two determinants, one with k 
even and the other with k odd. 

Thus apart from a nonzero constant, det [ Fjk] is the 
product of 

(~1T ) (21T.)] XH2k -p cos -jp 
n n j.k=O.I ..... [(1/2)n) 

and 

Had we taken vectors Fjk with k = O,I, ... ,n - 1 when n is 
even, the row and column corresponding toj = n12, k = nl2 
would appear not inDI but inD2. However, sin [ (21Tln) (nl 
2)p] = 0, and hence D2 as well as det [ Fjk ] would have been 
zero. 

As Hk (x) is a polynomial in x of degree k and parity 
( - l)k and as Hk_ 2, Hk- 4 , ... occur in other columns, by 
adding appropriate multiples of these to the k th one, we may 
replaceHk in the above equations by any polynomial ofthe 
same degree and parity. In particular, we may replace 
Hk(x) by Xk: 

DI = const det [fk(21Tln}J1L.k = O.I •...• [n/2 ), 

D2 = const det [gd(21Tln}J1]j.k = 1.2 •...• [(n - 1)/2)' 

where 

and 

gk(X) = p=~ 00 exp( - : p2}lk-1 sinpx. 

Let us recall here the definition of a Chebyshev set.6 A 
set of m functions {tpl (x), ... ,tpm (x)} is a Chebyshev set on 
[a"B] if and only if for any {a l,a2, ... ,am}, not all zero, 
l:r= I ajtpj {x} has at most m - 1 zeros in [a"B]. 

Now, det [tpj (xk ) ], j,k = 1,2, ... ,m, considered as a 
function of XI' say, is a linear combination of 
tpl(XI), .. ·,tpm (XI), and is zero if Xl is equal to any of the 
m - 1 numbers X2, ... ,xm' Thus det[ tpj (xk )] ,j,k = 1, ... ,m, 
is not zero for a<xI <X2 < ... <Xm <fJ if tpl (x), ... ,tpm (x) is 
a Chebyshev set on [a"B]. Hence Conjecture 4.1 thatD I and 
D2 are nonzero is a consequence of the following conjectures. 
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Conjecture 4.2: For n> 1, {fo(x),fl (x), ... ,/rnI2 )(x)} is 
a Chebyshev set on O<X<1T. 

Conjecture 4.3: For n>3, 

{g1(X),g2(X), ... ,g[(n_1)/2)(X)} 

is a Chebyshev set on 0 <x < 1T. 
For small values of n, say :S 4, it is not difficult to con

vince oneself that these conjectures are true. Since fast de
creasing exponentials are present, terms beyond a certain 
valueofp do not matter, andfk (x) andgdx) contain only a 
finite number of effective terms. The question is how many? 
Intuitively about n12, but this remains to be proved. 

v. SOME IDENTITIES 

In spite of, or maybe because of, the analogy with the 
continuum case, this approach is unsatisfactory. Eigenvec
tors come in a semi-infinite sequence and their hidden peri
odicity, if any, is difficult to discover. We do have the bilater
al symmetry and periodicity in the components of each 
vector, 

Fj.k = ( - 1) k Fn _ j.k = Fj + n.k (5.1) 

and numerical evidence is against a relation like 

Fj.k + 4m = AkFj.k' 
What one needs is a choice of n indices k l,k2, ... ,kn such that 
the Fjk are linearly independent for these indices and to ex
press any other Fjk as a linear combination of these. 

Lacking this we may still deduce a few identities, some 
of which may be new. One of them, Eq. (4.5), may be written 
as 

~exp( -: (p2+ (qn+p)2))Hk(~P) 

XHI(~(qn+p»)=o (5.2) 

if k =/=1 mod 4. Here and below, sums over p,q, ... are taken 
from - 00 to 00, unless explicitly stated otherwise. Equa
tion (5.2) is nontrivial for k + 1 even. A comparison ofEqs. 
(4.1) and (4.4) gives 

For example, with n = 2, we have 

}2 ( - l)pe- (1r12)P'H2k ([ii p) 
p 

= ( - 1)k.,fi}2 e- (1r12)(2p+ I)'H2k ([ii(2p + 1)). 
p 

Observing that for 1 = 4 or 2, 

(5.4) 

n-I 1 
}2 Bjk (/) = - (1 ± Iii) = ± [iiBOk (/), (5.5) 

j=O 2 
we deduce that for k = 0 or 2 mod 4, 
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n-I 

I fj,k = ±.[ii FO,k' 
j=O 

i.e., 

= (-1)k.[iiIexp( -1Tnp2)H2k(~21rnp). (S.6) 
P 

For n = 3 or 4, i 3 is not an eigenvalue of A, implying 
that fj,4k + 3 =0 for n = 3 or 4, i.e" 

~exp( -; (3p+ 1)2)H4k +3(.JIf (3p+ 1))=0 

(S.7) 

and 

~ exp( - ; (2p + 1)2)( - 1)P 

XH4k + 3(.Jf (2p + 1)) = O. (S.8) 

For n = 4 or S, the eigenvalue - I is nondegenerate, imply

ing that FO,4k + 2 = (1 - .[ii )fj,4k + 2' 0 <j < n, n = 4, S, i.e., 

~ exp( - ; (4p + 1)2) H4k +2(.Jf (4p + 1)) 

= I exp( -1T(2p + 1)2)H4k+2(J2iT(2p + 1») 
P 

= - I exp( - 41Tp2)H4k+2 ($iip) (S,9) 
P 

and 

~exp( - ; (Sp+ 1)2)H4k +2(.Jif (Sp+ 1)) 

= ~ exp( - ; (Sp + 2)2)H4k+2(.Jif (Sp + 2») 
= (1-v's)Iexp( -S1Tp2)H4k+2(~101Tp). (S.lO) 

P 

Equations (S.9) and (S.lO) are a little stronger than (S.6). 
For n = S, 6, 7, or 8, the eigenvalue - i is nondegenerate, 
implying that for these values of n, 

F I ,4k + 3 :F2,4k + 3 :F3,4k + 3 

(
. 21T 1 c) . 41T . 61T 

= Stn---vn :Stn-:Stn-, 
n 2 n n 

i.e., 
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~exp( - ~ (6p+ 1)2)H4k +3(.Jf (6p+ 1)) 

= (1- ~)~ exp( - ~ 1T(3p + 1)2) 

XH4k+3(~ (3p + 1)), (S.12) 

(
. 21T .fi ) - I", (1T 1 2) 
StnT-T f exp -1' (7p+ ) 

XH4k +3(.Jif (7p+ 1)) 

= (sin ~)-I~exp( -; (7P+2)2) 

XH4k + 3(.Jif (7P +2») 

= (sin 6;r I~ exp( - ; (7p + 3)2) 

XH4k + 3(.Jif (7p + 3»), (S.13) 

and a similar equation replacing 7 by 8. 
For any n the multiplicity of the eigenvalue 1 is 

[ (n + 4) /4]. Therefore an 1 X 1 determinant [fj,4k] with 
j = 0,1, ... ,1- 1 and k taking 1 different values, is zero for 
I> [( n + 4) /4] . Similar statements can be made concerning 
det [ fj,4k + I ], det [ fj,4k + 2 ], and det [ fj,4k + 3 ]. They will 
vanish as soon as their size becomes larger than [( n + 1) / 
4], [(n + 2)/4], and [(n - 1 )/4], respectively. 

Equation (S.6) for n = 1 seems to be equivalent to 

I e- 1TP'H2k (/iip) = ( -1)kI (2/iip)2ke -1TP' (S.14) 
P P 

of Grosjean7 or to an identity of Schempp7 involving La
guerre polynomials. 

Many of the relations satisfied by oscillator wave func
tions have discrete analogs as identities. For this, one does 
the following replacements: 

1 foo 1 n I? - dy-+- I, y-+ n
1T 

(pn + I), 
J2iT - 00 .[ii 1= I 

x-+l? (pn +j), 

and adds a summation over p. For example, 

_1_ foo dy eixYe - (1/2)YHk (y) = ike - (/2)x'Hk (x) 
J2iT - 00 

becomes the eigenvalue equation (4.3); 

_l_foo dy(2k+ l-y2)e-O/2)YHk(y)eVcY 
J2iT - 00 

= jkx 2e - (1/2)X'Hk (x) 

becomes, after some simplification, 
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and 

~ f'" dy{2yHk (y) - Hk+ dy)}e- (I/2)reix
), 

v2tr - "" 
=2k'ik - 1e-(I/2)X'Hk I(X) 

becomes 

Jn~{2~PHk(~P) 
- Hk + I (~ p)}e - (fTln)p'ei(2fTln)pj 

= 2k.;k-I~ e-(1Tln)(pn+j)2Hk_I(~ (pn +j»). 
To prove these relations, one observes that the right-hand 
sides considered as functions of j are periodic with period n 
and proceeds by expanding them in a Fourier series as at the 
beginning of Sec. IV. 
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The foundations of a variational calculus on fibered supermanifolds are outlined, giving 
applications to the formulation of superspace field theories. Utiyama theorems and 
conservation laws related to local gauge and general invariance of the theory are proved. 

I. INTRODUCTION 

In view of the extensive use of superspace techniques 
made by physicists in the study of supersymmetric field the
ories, it is rather natural to wonder whether these techniques 
can be given a sound mathematical foundation in terms of a 
variational calculus on supermanifolds. This allows extend
ing to superspace field theories typical features of ordinary 
Lagrangian theories, such as conservation laws, Utiyama 
theorem, etc. 

As far as the definition of the action functional is con
cerned, one is faced with two major possibilities. 

(i) One is to regard the action as an integral over a 
region of the supermanifold M. This approach should be 
viable since people working in supermanifold theory have 
recently succeeded in formulating a satisfactory theory of 
integration on supermanifolds. l

-4 

(ii) The otheris to integrate on suitable local slices of M, 
which play the role of open sets in space-time Mo. 

In this paper we follow the second approach. The main 
motivations for this choice are the following. 

(i) Integrating on open sets in space-time allows a sim
ple generalization of most of the concepts used in the vari
ational calculus on ordinary fibered manifolds. 5,6 

(ii) In the group manifold approach 7,8 the action is con
structed in a way that is easily recognized to be a particular 
case of our procedure for building up the action; as a conse
quence, the results obtained there are easily comparable with 
ours. 

II. JET BUNDLES ON SUPERMANIFOLDS 

Rather obviously, a field theory on a supermanifold M 
must contain, among its field variables, such objects as a 
connection form on a principal super fiber bundle P over M 
and the coframe field, perhaps in addition to matter or auxil
iary fields. This entails that some of the field variables are 
differential one-forms. However, assuming that all the fields 
are zero-forms (functions) simplifies greatly the explicit 
writing of many equations, so that in this section we stick to 
that choice. Later on, we shall freely use generalizations of 
the equations given in this section which contain one-form 
fields. 

In the language of variational calculus on fibered mani
folds, the above assumption means that the fields are sec
tions of a supervector bundle 1T: E -+M,9 whose standard fi
ber is a supervector space F.IO In this paper we shall use 
Rogers' definition of superman if old II as developed by Jadc
zyk and Pilch. 10 So, if Q = Qo Ell QI is a Banach-Grassmann 

algebra and Qm,n is the graded Banach Qo-module (Qo)m 
X (QI ) n, we say that M is an (m,n) -dimensional supermani
fold if it is a Banach manifold 12 locally modeled on Q m,n by 
means of an atlas whose transition functions are super
smooth. A functionf UCQm,n_QM is said to be super
smooth ifit is C k (k> I) in the sense of Frechet13 and its first 
Frechet differential is a Qo-linear map Df Q m,n -+ Q M. Basic 
references for supermanifold theory are Refs. 10, II, and 14-
24. 

Since we do not intend to build up a merely formal vari
ational calculus, but rather to use the differential calculus on 
Banach spaces to define the action functional and discuss its 
extremization, we need to introduce suitable Banach spaces 
of fields. To this end we shall need the following lemma.25 

Lemma 2. J: Let U be an open set in Q m,n, and E k( U) 
the ring of C k and supersmooth functions f U -+ Qo whose 
first k Frechet differentials are bounded on U. Provided that 
k =1= 00, w, E k( U) is a Banach space under the norm 

11/11 = L sup IID1(x) II, 
i=O,k xeU 

where D i is the ith Frechet differential and the norms in the 
right-hand side (rhs) are taken inL( ® iQm,n, Qo). • 

Let us now define jE, the bundle of first jets of sections S 

of E. Let U be an open set in M, with coordinates {x4, 
A = I, ... ,m + n}, and let {(x4, z'), r = I, ... ,dim F} be fi
bered coordinates in 1T-

1 (U). Given two sections SI' S2 ErE 
(in the following, r B will denote the space of local cross 
sections of any bundle B), we say thats l :::::S2 inxEM ifs l (x) 

= S2(X) and SI. (x) = S2. (x). The set jE: = E /::::: is a su
pervector bundlej1T:jE -+M; inj1T- 1 (U) we can put fibered 
coordinates {x4, z', ZA'} such that zA'=az'/ax4 on any 
section of E. Given sErE, the couplejs = (s,s. ) is a section 
ofjE called thejet extension of s. 

A couple of mappings Il: E -+ E, (3: M -+ M is said to be an 
automorphism of E if it is a C k automorphism of E as a vector 
bundle, and Il and (3 are supersmooth. In analogy with ordi
nary differential geometry,5 it is easily proved that, for any 
automorphism ( Il, (3) of E, there exists a unique automor
phism (j1l,(3) of jE such that jwjs·(3 -I =j( w s .(3 -I) 
't/sErE. If {(Il,,(3,), tER} is a group of local automor
phisms of E, and XErTE its generator, the generator 
jXEr( TjE) of {(jill' (3,)} is called the jet extension of X. 

Lemma 2.2: If, in local fibered coordinates, 

b A a h' a 
X= -+ -ax4 az' , 
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then 

rx=bA~+h'~+ [dh' -Z ,ab
B

] _a_. 
J a~ az' d~ B a~ azA' 

where the "total derivative" d I d~ maps functions on E into 
functions onjE and is defined as 

~=~+ZA'~' • 
d~ a~ az' 

III. ACTION FUNCTIONAL AND FIELD EQUATIONS 

According to our discussion of Sec. I. we intend to con
struct the action functional for the supermanifold field the
ory by integrating a suitable Lagrangian form over open sets 
in space-time. Now. under suitable conditions.26 an (m.n)
dimensional supermanifold M defines intrinsically an m-di
mensional ordinary differentiable manifold Mo. called the 
body manifold of M. together with a smooth projection cI>: 
M .... Mo. We assume that M admits a body manifold that we 
identify with space-time. 

Let us recall some properties of supermanifolds that we 
shall need in order to define the action functional. 

Lemma 3.1: Let M be a superanalytic supermanifold 
with body Mo. There exist covers A = {Ua • aeJ} of M and 
Ao = {Va' aeJ} of Mo (where J is a suitable index set). such 
that the following conditions hold. 

(i) cI>( Ua ) = Va VaeJ. 
(ii) For each aeJ there exists an analytic imbedding i: 

Va .... Ua such that cI>. i is surjective. In the following such 
imbeddings will be called local injections. 

(iii) For any local injection i: Va .... Ua there exist func
tionsf Ua .... Qo such that i*flaVa = o. 

(iv) For any couple of local injections i. k: Va .... Ua 
there exists a superanalytic diffeomorphism /3 of Ua such 
that i = /3' k. 

(v) E is trivial over Ua • 

(vi) Iffis ap-form on UCM. p<.m. and i*f = 0 for all 
local injections i: V .... U. thenf = O. 

Proof: Points (i)-(v) are proved in Ref. 25. As far 
as (vi) is concerned. choosing a coordinate patch (x.y) 
on U such that i(r) = (r.O). one has immediately (a I 
axi) Jf = O. The condition (a laya) Jf = 0 is obtained by 
considering the collection of local injections {ik,8}' 
k = 1 •...• m. /3 = 1 •...• n. where 

ik,8(r) = (r.6pr"6b/llbll). 

b being an arbitrary element of Q 1. and 6 a suitably small real 
number. • 

Before defining the action functional. we need to intro
duce the following objects: (i) a Banach space of sections of 
E; (ii) a space of "admissible variations." i.e .• of vertical 
vector fields in E that vanish on the boundary of the integra
tion region; and (iii) a Lagrangian form. As far as point (i) 
is concerned. we note that the completed tensor product Ba 
= E k( Ua ) ® F (the set of C k. supersmooth sections of E 

over Ua whose first k Frechet differentials are bounded) is a 
Banach space. The space of admissible variations is defined 
as 

B;.i = {Xer(vert TE) such that i* x'iava = O} 
for a given local injection i: Va .... Ua• so that for each local 
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injection there is a different set of admissible variations. B;'i 
is a Banach subspace of Ba.2S Finally. a supermanifold La
grangian l: is a bounded. Ek horizontal m-form onjE with 
values in Qo. 

We define the action functional as the following i-depen
dent mapping ofBa into Qo: 

(3.1) 

The expression in the rhs is basically the integral of a Banach 
space-valued function with domain in an open set in R m. 
Such objects are well known to mathematicians. 13 

Definition: A section serE is critical if 

DAa U.s)' (X) = 0 (3.2) 

for all local injections i. all XeB;';. and all Ua • 

Lemma 3.2: A section serE is critical if and only if 

r i*·js*.!£'jxl:=O (3.3) JVa 

for all local injections i. all X eB;'i' and all U a ; .!£' denotes the 
Lie derivative. • 

The next natural step is to translate the extremality con
dition (3.2) or (3.3) into a set oflocal field equations onM 
(Euler-Lagrange equations). However. in order that this 
can be done. some constraints have to be put on the super
manifold Lagrangian l:. After setting. for notational con-
venience. 

al: = _1_ ( _ l)m+ ,(A, + ... + Am>dxAm . .. d~1 al:A, ... Am 

az' m! az' 

~ = _1_ ( _ 1)m+ (B+,)(A , + ... +Am> 
azB ' m! 

Eq. (3.3) reads 

i ·*x'(· *al: ( I)B' a . * al: ) I JS - - - -JS --
Va az' axB az' 

+ r i*~(X'jS*~) =0. JVa axB azB' 

where l: = (lIm!) dxAm .. ·d~1 l:A ... A andX'(x) = S* X'. 
1 m 

Considering separately the terms with B even or odd. the last 
summand splits into two. The first term vanishes as a conse
quence of Stokes theorem and the boundary conditions. 
while the second reads 

i .* a (X" * al:- ) - 1 I -- JS -- T. J.l - m + ..... m + n. 
Va ayl-' azl-" 

(3.4 ) 

where we have denoted by T the volume element in Mo and 

l:- = (1/m!)dxim .. 'dxi, l:i ... i . 
1 m 

Now. developing X'(x) andjs* (al:-1aZI-") into super
fields (namely. developing them into powers of the odd co
ordinatesy 1-'). one sees that the term (3.4) vanishes if 

js*~=O. (3.5) 
azl-" 
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If~ does not depend explicitly on the supermanifold coordi
nates, conditions (3.4) and (3.5) are equivalent. 

Thus we have the following result. 
Theorem 3.1 (local Euler-Lagrange equations on the 

supermanifold): Provided that ~ satisfies condition (3.5) 
for all sErE, a section sErE is critical if and only if, on any 
coordinate patch {U,(xj,y P)}, it verifies 

. *a~ ( I)B' a . * a~ - 0 JS-- - -JS---. 
az' axB azB ' 

(3.6) 

• 
The constraints (3.5) are similar to the "new" Euler-

Lagrangian equations one finds in the calculus of variations 
on graded manifolds,27 where they have been interpreted as 
the kinematical constraints arising, e.g., in superspace super
gravity.28 Our attitude here is somewhat different, since the 
constraints (3.5) are identically fulfilled by polynomial La
grangians, while, on the other hand, the Wess-Zumino kine
matical constraints can be obtained as field equations from a 
polynomial supermanifold Lagrangian.29 

IV. REDUCTION TO SPACE-TIME 

It is rather natural to ask whether, given a field theory 
formulated on a supermanifold, there exists an ordinary field 
theory on space-time in some sense naturally related to the 
former. In this section we examine this question. We shall 
see that requiring that the supermanifold Lagrangian ~ gives 
rise to a globally defined space-time Lagrangian L leads to 
constraints on the choice of ~. 

We denote by 1To: Eo-Mo the configuration bundle of 
the space-time theory, which is a supervector bundle over 
Mo (the body manifold of M, identified with space-time) 
with standard fiber F (the same fiber of E). So the space
time fields are still Q valued (Grassmann valued), and there
fore contain more information than the usual space-time 
fields. The possible physical significance of this extra infor
mation is still an open question. 

In general, Eo and E cannot be put in a global relation; 
however, given a local injection i: Va - Ua , one can con
struct in an obvious way a local bundle homomorphism 7'j: 

1T- 1 (Ua ) CE -1To-
1

( Va) CEo such that, for any section 
sErE, the mapping 0' = 7'j • S· i is a section of Eo. A similar 
homomorphism of j1T- 1 (Ua ) CjE into j1T- 1 (Va) CjEo, 
which we shall still denote by 'Tj , can be constructed. 

The Banach space BOa of C k sections of Eo over Va is 
defined in analogy to Ba .The LagrangianL of the space-time 
theory-a bounded, horizontal m form onjEo with values in 
Qo-is defined tentatively by setting 

jO'*L = i*'js*~ (4.1 ) 

for each 0' that can be written as 0' = 'Tj 's'i for some SErE. 
The next theorem states sufficient conditions in order that 
( 4.1) makes sense. 

Theorem 4.1: Assume that the supermanifold Lagran
gian ~ satisfies the following conditions. 

(1') .*. * a~ 0 1 'JS --= , 
azp ' 

(4.2) 

V sErE, V local injection i; Eq. (4.2) has been written using 
coordinates {x,y} in Ua such thati(r) = (r,O), /'EVa' 
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(ii) /3 *~( s) = ~( /3 *S) (4.3) 

for any superdiffeomorphism/3 of M; then there exists onjEo 
an m-form L satisfying Eq. (4.1). 

Remarks: (i) Conditions (4.2) have an obvious mean
ing: since the functions i*~il"'im are the components of the 
space-time Lagrangian L, they must depend only on the co
ordinates ofjEo . 

(ii) /3 *s denotes the section obtained by pulling back S 

regarded as a collection of functions on M; it equals p. s· /3 - I, 

wherepisthe lift of /3 toE defined as /3-1*. Thencondi
tion (4.3) can be rewritten as 

(4.4) 

and therefore is the condition of in variance of~ under super
diffeomorphisms. This property of ~ will be further dis
cussed in the next section. 

Proof; First, we verify that L is independent of the choice 
of the section S such that 0' = 'Tj 'S'i. This amounts to requir
ing that 

i*·js*.YjX~ = 0, (4.5) 

for any XEr(vert TE) satisfying 'Tj.X = O. Since this condi
tion is equivalent to i* . S* X' = 0 [where X = X' (a / az') ], 
Eq. (4.5) can be turned into (4.2), so that the independence 
from S is assured. 

Second, we verify whether L defined through (4.1) de
pends on the choice of the local injection i. This means 
checking whether 

i* 'jsT~ = k * 'js1~, (4.6) 

whenever 'Tj ·s·i = 'Tk 's'k, where i, k: Va - Ua are two local 
injections. Since a superdiffeomorphism/3 of Ua exists such 
that k = /3'i (see Lemma 3.1), we can choose SI' S2 so that 
SI=/3*S2 (i.e., SZ=P·SI·/3-I). Then (4.6) reads 
i*'/3 *~(S2) = i*~( /3 *sz); since this must hold Vi, it is e
quivalent to (4.3). • 

To sum up, whenever the supermanifold Lagrangian ~ 
satisfies the requirements (4.2) and (4.3), it gives rise to a 
well-defined space-time Lagrangian L. In that case, we say 
that ~ is projectable. Then the action functional 

aa (0') = f. jO'*L 
Va 

yields an ordinary field theory on space-time whose fields are 
Q valued (Grassmann valued). It is easily proved that any 
supermanifold Lagrangian which is a polynomial (in the 
horizontal exterior algebra over jE) of the forms z' and Z' 
= dx4 Z A ' is projectable. 

V.INVARIANCE PROPERTIES 

In this section we study the properties of invariance of a 
field theory on a supermanifold M under the action of gauge 
transformations and superdiffeomorphisms of M. The sim
plest class of nontrivial theory we can take into account are 
the pure gauge theories, where all the fields are gauge fields. 
So the configuration superbundle is E = C(M) X V(M), 
with C(M) the bundle of connections on some principal su
per fiber bundleP(M,G) over M, and V(M) the superbundle 
of linear coframes on M.9 The standard fiber G of P is a 
super-Lie groupl4 playing the role of the gauge group. A 
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natural choice of local fibered coordinates in the tubes 
1T- 1( U) is {xA,mB b,eB

A}, wheremB b and eB
A are the compo

nents of the connection and coframe forms mb and ~ over the 
basis {dxA} (the index b runs over a basis of the superalgebra 
g of G). Concerning the further coordinates ofjE, it is con
venient not to choose the partial derivatives of the compo
nents of the connection and coframe, but other coordinates 
more directly related to the curvature and torsion forms Ob 
and TA. Recalling the structure equations and Bianchi iden
tities 

Ob = dmb - !md ma Ca/, TA = d~ - eB mb fbB A, 

DOb = 0, DTA = ~ Ob fbB A, 

where the Cad b are the structure constants of the superalge
bra of G, and thefbB A are the generators of a representationf 
of G on Q m,n we introduce inj1T- 1 (U) local fibered coordi
nates {xA, mB b, eB A, nAB b, TAB C} such that, for any section 
sex) = (mb

, ~) of E, one has 

A amBa 
jS*OABa= -2 axA _(_l)A(B+blmBbmAcCcba, 

ae C 
js*TAB

c = - 2 a; - 2( _l)A(B+DleB D mA
a faD c. 

Here and in the following, we omit the wedge product sym
bol. 

Now we give a proper definition of gauge in variance of 
the supermanifold Lagrangian I and deduce a generaliza
tion of the well-known Utiyama theorem3o to the present 
situation. LetA *er(vert TE) be the generator ofa ftow onE 
produced by a fiber-depending action of G on E defined 
through the representations/and Ad. We say that I is locally 
G invariant if 

.5t'jA.I = 0 (S.l ) 

for any choice of A *. 
Theorem 5.1: I is locally G invariant if and only if 

(i) ~=O, (S.2a) 
amBa 

( .. ) aI (l)AB aI - 0 
11 -A--+ - -A---' (S.2b) 

aOABa aOBA
a 

(iii) [( - l)b(B + CleB C fbC E~ 
aeB

E 

+ (- l)b(A+B+dlnBAd c
bd

a-1--
aOBA

a 

+ ( 1 ) b(A + B + c>"T' C I' E a ] ~ - 0 - AB JbC -A--"- . 
aTAB

E 

(S.2c) 

Proof: The proof is obtained by writing condition (S.l) 
explicitly. • 

So I is locally G invariant if and only if it does not 
depend explicitly on the connection, it depends on the de
rivatives of the connection only through the curvature form, 
and, finally, it is a G-invariant function of its variables. 

Next, we wish to study the consequences of the superco
variance condition (4.4). If {f3" tER} is a group of superdif
feomorphisms of M with generator YerTM, we denote by 
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ZerTE the generator ofthe lift {13 t} to E (note, for future 
use, thatjZ contains the derivatives of order 0, 1, and 2 of Y). 
The infinitesimal version of the supercovariance condition 
(4.4) reads 

.5t'jzI=O. (5.3) 

Theorem 5.2 (Utiyama theorem for the invariance un
der superdiffeomorphisms): The supermanifold Lagrangian 
I is supercovariant if and only if 

( .) aI_O 
1 -- , 

axA 
(S.4a) 

(ii) !I + ( _ 1)AB !I = 0, (S.4b) 
aTAB C aTBA C 

(iii) m A a aI a + n AD a !I + ( _ 1 )D(B +AlnDA a 
amB aOBD

a 

aI c aI A c aI 
X-A--+eA --C+ TAD -",--

aODB a aeB aTBD C 

+ (_1)D(B+AlTDAC~ 
a'" C TDB 

- ( - 1) (A +BlB dXB~ J I = o. (S.4c) 
axA 

Proof: The theorem is proved simply by writing condi
tion (S. 3) explicitly and setting equal to zero the terms 
which multiply the derivatives of Y of order 0, 1, and 2, 
respectively. • 

So, I is supercovariant if and only if it does not depend 
on the supermanifold coordinates, it depends on the deriva
tives of the coframe only through the torsion form, and its 
"energy-momentum" form (S.4c)· vanishes identically. 

It is rather natural to wonder whether the conditions of 
supercovariance and G invariance entail some differential 
identities (conservation laws). As the following analysis will 
show, these identities do indeed exist, and can be written as 
differential equations on M. While, in general, they have a 
very complicated structure, whenever one assumes that I is 
a polynomial (in the horizontal exterior algebra overjE) of 
the forms m, e, 0, and T, the identities can be written rather 
nicely (the reader will realize that this is the same assump
tion made in the group manifold approach7

,8). Under this 
condition we have the following. 

Theorem 5.3: I admits differential field equations that 
can be written in the form 

js*Gb = 0, js*GA = 0, 

where 
aI aI 

Gb =--+D--+Jb , 
amb aob 

aI aI 
GA = a~ + D aTA ' 

Jb = - ~ fM B aI 
aTB ' 

D being the m-covariant exterior differential. Moreover, I is 
projectable (see Sec. IV), and therefore supercovariant. • 

In order to write down the differential identities, we 
need a general variation formula for evaluating js* .5t' jX I, 
where X is a projectable vector field on E. 

U. Bruzzo and R. Cianci 789 



                                                                                                                                    

Theorem 5.4: For allsEr E and all1TprojectableXErTE, 

jS*2'jx!' 

= b A..!..... J djs*!' - jS*(}' aGa + KAGA) + djs*/, 
a~ 

(5.5) 

where 

X b A a h a a K B a = (x)-+ A --+ A --, 
a~ awA

a aeA
B 

ha=d~(hAa-bBwABa), 
A 

KA = dxB(KB
A _ b C eBc

A), 

/= :KJ!,+},aa!, +KAa!' 
J aWa aet ' 

where W AB a and eAB C are the coordinates onjE correspond
ing to the partial derivatives of W B a and ec A. 

Outline 0/ the proof' For any ufiE choose an sErE such 
thatjs(x) = u where x =irr(u). SetjX(u) =X1 +X2 with 
Xl =js. ·j1T.X. Now, (js*2'jx!,(x») = (j1T.jX Jjs* dI,) 
+ djs*(jX J!') + js* (X2 J d!'). Equation (5.5) is now 
proved by direct computation; in particular, sinceX2 is verti
cal, the last term in the Lie derivative is computed straight
forwardly. • 

Theorem 5.5 (Noether theorem for the gauge invar
iance): If!' is locally G invariant, then, for all sErE, 

js*(DGb - (- l) bAet hAB GB) = 0. (5.6) 

Conversely, if the identity (5.6) holds, the action of G 
changes!' only by an exact form, so that the field equations 
are unchanged. 

Theorem 5.6 (Noether theorem for the invariance under 
superdiffeomorphisms): If!' is locally G invariant and su
percovariant then, for all sErE, 

js*DGA = (aA J Ob)jS*Gb 

+ (aA J TB)js*GB + aA Jjs* d!" (5.7) 

where {a A} is the frame dual to {et}. Conversely, if identity 
(5.7) holds, and !, is locally G invariant, the action of a 
superdiffeomorphism changes !, only by an exact form, so 
that the field equations are unchanged. 

Prooft: The two Noether theorems are proved by insert
ing the variation formula (5.5) into the integral versions of 
the definitions of G invariance and supercovariance and then 
integrating by parts. • 

VI. AN APPLICATION 

In this section we want to exemplify the contents of the 
previous sections by applying it to an example, namely, su
perspace N = 1 supergravity.28.29 In this case we can assume 
that the gauge group G is the Lorentz group, and that the 
supermanifold M has dimension (4,4). So the fields are the 
spin connection W ik on M and the coframe field et, 
;,k = 1, ... ,4, A = 1, ... ,8. The "bosonic" torsion Dei will be 
denoted by T i

, and the spinorial torsion De P, /3 = 5, ... ,8, by 
8 p. The supermanifold Lagrangian is 

!, = €ijkhelejOkh + 48CYiYseei. 
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Spinor (odd) indices are omitted, and C is the charge conju
gation matrix; for conventions concerning the algebra of the 
Dirac Yi matrices, the reader is referred to Ref. 29. Accord
ing to the discussion of the previous sections, we have the 
following. 

(i) !, satisfies the hypotheses of Theorem 5.3, so that it is 
projectable, supercovariant, and admits fields equations, 
that can be written as 

. kh Gi = 2€ijkheJ 0 - 48CYiYse = 0, 

G = 4CYIYs(2ei8 - eTi) = 0, 
h ~,h . Gik =€lkhj(2T +eCr e)eJ=O, 

where we have split the coframe equation into its even and 
odd parts. 

(ii) Since!' is projectable, there exists a field theory on 
Mo, whose Lagrangian is 

. j hk . 
L = €ijhk V'V R + 4\{1CYiYS1/lV', 

where Vi is the coframe on Mo, 1/1 is the gravitino field, 
'I' = D1/I, and R ik is the curvature on Mo' One can prove that, 
whenever sErE is critical with respect to !" the section 
oerEo defined by q = ;*s = Ti ·s·;, where; is a local injec
tion, is critical with respect to L. 

(iii) !, is Lorentz invariant, so that Theorem 5.5 gives 
the identity 

jS*DGlk = !jS*(Glek - Gkel )· 

Moreover, since !, is supercovariant as well, we have the 
couple of identities 

js*DGi = js* [ - 48CYiYs8 + 2€ijhkOhk(Tj + !eCyje)j, 

js*DG = js* [4CYiYs8( TI + !eCre) - CreGi]' 
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A systematic study of classical relativistic particles with internal structure, initiated in a 
previous paper, is continued and a study of second-order internal spaces (SOS) is presented 
within the framework of the Lagrangian form of constrained dynamics. Such internal spaces Q 
are those for which a phase-space treatment must necessarily use the cotangent bundle T *Q. 
The large variety of possible SOS's-ten discrete cases and two one-parameter families-is 
separated into those capable of a manifestly covariant description, and those for which special 
methods based on the transitive action ofSL(2,C) on a coset space are needed. The concept of 
the isotopy representation plays an important role in this context. Seven of the possible discrete 
SOS's are shown to be describable in a manifestly covariant way; two discrete and one one
parameter family of SOS's are shown to be unphysical in the sense that no Lagrangians can be 
written in which the internal and the space-time position variables are nontrivially coupled; 
and the remaining single discrete and one one-parameter family are shown to be physical 
though not describable in a manifestly covariant way. General phase-space methods uniformly 
applicable to all SOS's are developed; and as an illustrative example a Lagrangian model for an 
SOS in which the internal space is spanned by two orthonormal spacelike unit vectors is 
presented. 

I. INTRODUCTION 

The subject of relativistic particles with internal struc
ture has received a great deal of attention over a long period 
of time. A variety of approaches has been used in discussing 
different aspects of this problem. In a previous paper, hereaf
ter referred to as I, we have briefly reviewed the history of 
this subject, trying to highlight the different physical ideas 
and points of view used by various authors.! We also devel
oped a new approach based on group theoretic and differen
tial geometric methods, intended to systematically classify 
and investigate all possible physical systems of this type, 
within the framework of the Lagrangian formalism. 

A relativistic point particle with internal structure pos
sesses, in addition to space-time position variables xl', inter
nal coordinates qr describing an internal space Q (Ref. 2). 
An important physical condition imposed in I was that the 
space Q must admit a transitive action by the group 
G = SL (2,C), the twofold Jlniy~rsal covering group of the 
homogeneous Lorentz group SO( 3, 1) of special relativity. 
As a result, each conceivable Q is the coset space G I H for 
some subgroup H in G. The further restriction was then 
made to subgroupsH, which are connected Lie subgroups of 
G. Since all such subgroups are known up to conjugation/ 
there results a complete catalog of all possible internal spaces 
Q. The possible subgroups H consist of two continuous one
parameter families and 13 other distinct cases, leading to a 
similar variety of possible Q 's. Among theseH's are included 
both the entire group G and the trivial case consisting of the 
identity alone, corresponding, respectively, to Qbeing trivial 
or G itself. In the notation of Patera et al. 3 the one-parameter 
families of subgroups are written as Fr and Ff! with lP the 

concerned parameter; and the 13 other subgroups are Fn for 
n = 1, ... ,4,6, ... ,10,12, ... ,15. At the two ends of this list, we 
have F! = G and F!5 = e. The infinitesimal generators of 
each of these F's have been listed in I (Ref. 4). 

The set of all internal spaces Q was separated in I into 
two types, which were, respectively, called first-order spaces 
(FOS's) and second-order spaces (SOS's). The distinguish
ing property of the former is that in the phase-space descrip
tion of a relativistic object with such an internal space, one 
can work at the level of Q itself (as far as the internal degrees 
offreedom are concerned) without passing to the cotangent 
bundle T *Q at all; at least, the nature of Q permits this pro
vided the Lagrangian is properly chosen. All other Q's are, 
by definition, SOS's. It was possible to determine the possi
ble FOS's by using the Kostant-Kirillov-Souriau theorem, 
which relates coset spaces G I H carrying a G-invariant sym
plectic structure to orbits in the Lie algebra g of G under the 
adjoint action by G (Ref. 5). In this way we found that there 
are three possible FOS's, namely G I F9, G I FlO' and a third 
one which can be exhibited as SO (3,1 ) I FlO or GINo, where 
No is a suitable subgroup in G. (Actually No does not obey 
the condition of connectedness which was imposed on H 
above, so there is a departure here from the general pattern 
which, however, causes no difficulties.) The important geo
metrical and phase-space properties of FOS's, and of La
grangian models for relativistic objects with such internal 
structures, were discussed in detail in I (Ref. 6). The pur
pose of the present paper is to take up the study ofSOS's and 
of objects with such internal variables in a systematic way. 

ThenumberofpossiblecosetspacesQ = G IH that qua
lify in principle as SOS's is quite large, as compared to the 
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case of FOS·s. For convenience we introduce the following 
notation to keep track of them: 

Qn = G IFn. for n = 2.3,4.6.7.8.12.13.14.15. (1.1) 

Q~=GIF~. forn=5,I1. 

(The value n = 1 is omitted since then Q is trivial; the values 
n = 9. 10 leads to FOS·s.) Given anyone of these Q's as an 
internal space, the total configuration space is the product 
vii X Q. where vii is Minkowski space-time with coordinates 
xI". The complete set of Lagrangian variables describing 
T(vIIXQ) "'" T vii X TQisxl". q'. xl-', andi!'; the velocities are 
defined with respect to an unspecified evolution parameter s. 
(It is understood of course that the q' may only be local 
coordinates on Q.) Now it was shown in I that, in case Q is an 
FOS. the most general Lagrangian splits into the sum of two 
parts. the first of which is a function !/ 0 (q.q) linear in q' 
and the second of which is q independent. With Q chosen to 
be an SOS. however. there is no such natural breakup of the 
Lagrangian into separate parts distinguished by different q 
dependences. One must construct the most general function 
of all the Lagrangian variables subject to the conditions of 
Poincare and reparametrization invariances described in I. 
The important physical question which comes up for a given 
Q is whether it is possible to couple the internal variables q.q 
and the space-time variables x, x in a nontrivial way when 
constructing the Lagrangian. This question has an easy an
swer-in the affirmative--if Q can be described in a mani
festly covariant way. In that case in place ofthe minimal set 
of internal coordinates q' consisting of independent vari
ables. one can use an overcomplete system of coordinates for 
Q. made up of (sets of) quantities transforming linearly un
der G. with suitable G-invariant restrictions imposed upon 
them. The possibility of coupling the internal variables and 
velocities to ;XI-' is then immediate, and one can easily form 
Lorentz scalar combinations that can enter a Lagrangian. 
For other Q ·s. however. the answer to the basic question is 
not immediately evident, and special methods must be de
vised to handle them and to determine whether each of them 
is physical or unphysical in this sense. 

The material of this paper is arranged as follows. In Sec. 
II all those Q's that can be given manifestly covariant de
scriptions are discussed, and such a description is developed 
for each of them. In every case the description is via configu
rations of one. two, or at most three vectors with respect to 
SO(3.1). and the concerned SOS's are Qn for 
n = 3.4.6.12,13,14.15. For handling the remaining SOS·s. 
Sec. III develops techniques based on what is called the iso
topy representation associated with the action of G on a coset 
space G I H. This is a linear matrix representation of H, of the 
same dimension as G I H. We give systematic procedures for 
determining whether Lorentz scalars, four-vectors. second
rank symmetric tensors .... , can be constructed on TQ, with 
various degrees of dependence on q: these objects are candi
dates for coupling to xl', xl-'xv, ... . By applying these methods, 
it is shown that the SOS's Q2' Q f, Q7 are unphysical-that is, 
it is impossible to construct Lagrangians for point particles 
with such internal spaces. with a nontrivial coupling 
between;Xl-' and q,q. The two remaining candidates for SOS's, 
namely Qs and Q \1 • are taken up in Sec. IV. (Actually these 
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are an infinity ofSOS's since Q \1 is a one-parameter family.) 
For Qs. it is possible to show quite directly that it is physical
ly admissible, though a full treatment would require the 
methods of Sec. III. On the other hand. by application of 
those methods it is shown that in any Q \1 as well coupling of 
internal and space-time variables is definitely possible. The 
general features of a phase-space treatment for an object 
with a physical SOS as internal space are developed in Sec. V, 
with particular attention paid to the manifestly covariant 
cases. It is possible in all cases to regard the internal contri
bution SI-'V to the total four-dimensional angular momentum 
as the canonical momentum conjugate to the internal space 
Q. As an illustration of the general ideas, a manifestly covar
iant Lagrangian model based on Ql3 as an internal space is 
presented in Sec. VI. This is intended to capture some of the 
features of the Hanson-Regge model, but with useful simpli
fications. 7 Section VII contains some remarks and a table 
presenting the main results so that the overall picture con
cerning the large number of conceivable SOS's can be easily 
grasped. We emphasize that the aim of this paper is to survey 
the set of all possible SOS's. classify them in a useful way, 
and develop suitable methods to deal with them. and not to 
discuss in complete detail the dynamics of any particular 
model. Thus we carry the development far enough so that 
one can in principle construct the most general Lagrangian 
in any specific case, provided the concerned SOS is a physi
cally admissible one; an example is provided by Sec. VI. 
Further study of the constraint structures, dynamics and 
external field couplings in interesting cases will be taken up 
elsewhere. The Appendix contains a useful lemma relating 
to finite-dimensional representations ofSL(2,C). 

II. MANIFESTLY COVARIANT SOS'S 

Let Q be anyone of the possible SOS's, with q' a system 
of (local) coordinates for it. On account of space-time trans
lation invariance, the Lagrangian for an isolated point object 
with internal space Q must be a function only of X. q, and q, 
and so it is written !/(x,q,q). While;Xl-' transforms as a 
translation invariant four-vector under the Poincare group 
9, the transitive G action on Q appears as a set of point 
transformations on the internal variables q'. (Suitable nota
tion to deal with these transformations will be set up in Sec. 
III.) The internal velocities it then transform linearly 
among themselves, possibly with functions of q for coeffi
cients. Given these behaviors of the arguments of !/, the two 
conditions to be obeyed by !/ are (i) it must be G invariant, 
and (ii) it must be homogeneous of degree 1 in the velocities 
;XI-' and q'. The former condition guarantees the Poincare in
variance of the system, hence the validity of the conservation 
laws; the latter leads to reparametrization invariance of the 
action. One can then see that the general form of the Lagran
gian must bes 

!/(x,q,q) = (-X2 )1/2j("'b"')' (2.1) 

where the arguments b of the real function! form a complete 
independent set of Lorentz scalars formed out of x, q, and q; 
with each b being homogeneous of degree zero in the veloc
ities. We now consider in general terms the way in which to 
build up the b'S. 

M. V. Atre and N. Mukunda 793 



                                                                                                                                    

On account of the transitive action of G on Q, there can 
be no nontrivial Lorentz scalar functions of the q' alone; 
some dependence on q and/or x must be present in every;. 
The possibility that there is no x dependence is a particular 
case of the following more general procedure, so we consider 
how x can be combined with q and q to form; 'so Now X'" 
belongs to the four-vector or D (1/2.1/2) representation of 
SO(3,1). The homogeneous monomials X"'xv, X"'xvX", ... (on 
removal of traces) give quantities belonging to the various 
symmetric traceless tensor representations D (I.Il, 
D (3/2.3/2), ... , generally D (jJ), ofSO(3,1). First let us consider 
; 's with no q dependence. We attempt to construct as many 
independent sets of functions VJl (q), I JlV (q) , ... , as possible 
on Q, transforming according to the linear SO ( 3, I) repre
sentationsD (I!2.1/2l,D (1.1), ... , ofSO(3,1) when theq'aresub
jected to the point transformations realizing G. A general 
"multiplet" of such functions belonging to the representa
tion D (jJ) will be called a quantity of typej on Q. By con
tracting VJl (q), IJlv (q), ... , withxJl, xJlxv, ... , and then dividing 
through by suitable powers of ( - x2

), we produce possible 
; 's with no q dependence. To include q dependence, we fol
low a similar procedure with the following difference: we 
look for quantities VJl (q,q), tJlv (q,q), ... , generally quantities 
oftypej on TQ, at first linear in q, then quadratic in q, and so 
on. (While in the q independent case we are interested in 
j = p, ... , now we include the possibility j = 0 as well.) 
These can then be contracted among themselves (which 
would reproducej = 0) or with x Jl, X"'xv, ... , to again give us, 
after division by suitable powers of ( - x2

), possible; 's. 
While this is the systematic procedure for building up 

the set of; 's for any given SOS, there are several SOS's that 
allow a more direct treatment. These are the ones which can 
be given a manifestly covariant description in terms of suit
able configurations of sets of space-time four-vectors.9 Such 
descriptions invariably use an overcomplete set of coordi
nates in the interest of manifest covariance, subject to suit
able Lorentz invariant restrictions. These manifestly covar
iant SOS's are Qn' for n = 3,4,6,12,13,14, and 15. We shall 
describe them directly in geometrical terms and then verify 
that they are indeed realizations of the coset spaces G I Fn for 
the above mentioned values of n. 

As in I we denote by eo, el , e2' e3 a set of orthonormal 
vectors in space-time in the indicated directions, and by the 
letters t,s, and f a general unit positive timelike, a unit space
like, and a positive lightlike vector, respectively. Looking 
first at manifolds formed by one vector at a time, the set Q(t) 

of all unit positive timelike vectors, 

Q(t) = {aJl la2 = - I, aO>O} (2.2) 

forms the unit timelike hyperboloid on which SOC 3, I) acts 
transitively. A representative point on QU) is eo or in com
ponent form (1,0,0,0), with stability group SO(3) in 
SO(3,1) or SU(2) in SL(2,C). Since SU(2) is generated by 
J I ,.!2,.!3' it follows, as is well known, that QU) is a realization 
of the coset space G I F3: 

Q(I) = Q3 = G IF3 = SO(3,1)/SO(3). (2.3) 

Similarly, Q(s) defined by 

Q(s) = {aJl la2 = 1}, (2.4) 
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is a realization of Q4 because the representative point 
e3 = (0,0,0,1) has a stability group SO (2, I ) C SO (3, I ) gen
erated by J3, K l' and K 2: 

Q(s) = Q4 = G IF4 = SO(3,1)/SO(2,1). (2.5) 
Lastly, 

Q(l) = {aIlla 2 = 0, aO> a} (2.6) 

defines the positive light cone; a representative point on it is 
eO +e3 =(1,0,0,1) with stability group E(2)CSO(3,1) 
generated by J3, NI = J I - K 2, N2 = J2 + K I. Thus this is a 
realization of Q6: 

(2.7) 

Thus the configurations of one vector at a time, Q(I), Q(s), 

and Q(l), respectively, realize the SOS's Q3' Q4' and Q6; and 
for an object with such an internal space the vector aJl with 
suitable conditions on it can be used as the internal variable. 

We next look at configurations formed by two vectors at 
a time, the members of the pair being independent and mutu
ally orthogonal. 10 Because of the signature of the space-time 
metric, the only possible choices are Is, ss, and sf. Let us then 
define Q(ts) by 

Q(ts) = {(aJl,b Jl ) la2 = - I, 

(2.8) 

Since any pair (aI', bJl) eQUs) can be carried by a suitable 
SOC 3, I) transformation to the standard pair (eO,e3 ), it fol
lows that SOC 3, 1) acts transitively on Q(ts). Now the sub
group of SO (3,1) leaving this representative pair invariant 
(i.e., leaving each of eo and e3 invariant) is clearly SO(2) 
generated by J3 [U (1) within SL(2,C)], hence it follows 
that 

Q(ts) = Q12 = G IF12 = SO(3,1 )/SO(2). (2.9) 

In a similar way we define 

Q(ss) = {(aJl,b Jl )la2 = b 2 = 1, a.b = O}. (2.10) 

This also carries a transitive action by SO(3, I), and the pair 
(e l ,e2 ) can be taken as a representative point. [In this case it 
must be understood that "points" of Q(ss) are ordered pairs, 
and (aI', bJl) must be distinguished from (bJl,aJl ).] The 
transformations of SO (3, I) that leave both eland e2 invar
iant are pure Lorentz transformations in the three-direction, 
i.e., SOC 1, I) with K3 as its generator. This is the subgroup 
F13 of the general classification, so 

Q(ss) = Q13 = G IF13 = SO(3,1 )/SO(1,I). (2.11 ) 

Lastly in this category we have the manifold 

Q(sf) = {(aJl,b Jl )la2 = 1, b 2=0, bO>O, a.b=O}, 

(2.12) 
for which a representative point is (e2, eo + e3 ). The stability 
group of this pair is generated by N2 = J2 + K I, i.e., it is the 
subgroup Fw so 

Q(sl) = QI4 = G/F14' (2.13) 

For an object with anyone of the SOS's Q12' Q13' or QI4 as 
internal space, we can use a suitable pair of vectors (all, b 1') 

as internal coordinates. 
The third and final type of configuration we consider is 

that provided by three mutually orthogonal unit vectors, say 
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tss, of which the first is positive timelike and the other two 
spacelike. Once again the sequence in which the last two are 
given is important. In four-dimensional space-time such a 
triad (aI", b 1", cP') can be completed to a tetrad by adjoining 
another unit spacelike vector orthogonal to each member of 
the triad, and with an unambiguous direction. A standard 
tetrad to which any other tetrad can be taken by a unique 
element ofSO(3,1) is of course (eo, e l , e2, e3 ). This suffices 
to show that 

Q(tss) = {(al",b 1",cP') \a2 = - 1, 

b 2 = c2 = 1, aO>a, a.b = b.c = c.a = a} (2.14) 

is a realization of the group SO (3,1) itself, i.e., 

Q(tss) = QI5 = SO(3,1) = SL(2,c)lz2 • (2.15) 

From the discussion above it is clear that in the case of 
any manifestly covariant SOS the construction of a complete 
set of; 's is quite straightforward, since it is reduced to a 
geometrical problem that is easy to visualize. Once the;'s 
are in hand, the most general Lagrangian can be constructed 
as indicated in Eq. (2.1), and the constraints and dynamics 
can be studied. It goes without saying that in these cases it is 
always possible to couple xl" and the internal variables q, q 
non trivially . 

The use of Q 15 as the internal space is exemplified by the 
classic work of Hanson and Regge,7 as well as in the work of 
Halbwachs. II In a sense Q13 appears in the work of Cognola 
et al., 12 except that the condition of transitive G action is not 
imposed. The vector model of Mukunda et al. 6 is based on Q4 
as the internal space. In Sec. VI, we shall use QI3 as an illus
trative example to develop a particular Lagrangian model 
with an interesting internal symmetry. 

The remaining SOS's are Q2' Qr, Q7' Qg, and Qfl' of 
which the second and fifth are one-parameter families. 
Though Q2' Q7' and Qg can be visualized geometrically and 
group theoretically, none of them nor Q r, Q fl can be given a 
manifestly covariant description, and suitable methods are 
needed to handle them. To their development we now tum. 

III. METHOD OF ISOTOPY REPRESENTATION
DETERMINATION OF UNPHYSICAL SOS's 

For any given SOS, the main kinematic or geometric 
problem to be solved first before the general Lagrangian 
( 2.1 ) can be written is the construction of a complete set of; 
variables. In the process one would discover whether, in a 
given case, the jcI" combine nontrivially with the internal q's 
and q's in some of the; 's. The successive steps one must go 
through in building up the;'s were briefly described in the 
previous section. For those SOS's that can be given a mani
festly covariant description, this procedure can be essentially 
sidestepped in favor of direct geometrical arguments. How
ever, for the remaining three discrete and two one-parameter 
families of possible Q 's we have no alternative but to develop 
in detail the steps outlined in the previous section. 

In order to keep track of the arguments and the algebra 
we shall name the steps of the procedure of Sec. II in this 
way. We call step Ao the attempt to construct quantities of 
typej on Q forj = ~, q, .... Next we call step A I the search for 
quantities oftypej on TQ, forj = a.!, 1, ... , which are linear in 
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the internal velocities q. This is followed by step A 2 which is 
the search for quantities of type j on TQ. again for 
j = a.~.I, .... which are quadratic in the q. And then follow 
steps A 3 •••• • All these steps must be gone through for each 
choice Q of the SOS. To set up the necessary machinery 
required for these steps. we begin with some well-known 
properties of the transitive G action on a coset space Q = G I 
H (Ref. 13.). 

It will be adequate to describe both Q and TQ with local 
coordinates q' and q',q'. respectively; for convenience we 
sometimes write v' in place of q'. There is a distinguished 
"origin" in Q which is denoted qo: it is the identity coset 
consisting of H itself. An element geG acting on Q maps the 
point q' to an image point q": the dependence of q' on g and q 
is denoted by a set of functions q;: 

q"=q;'(g;q). q'.qeQ, geG. (3.1) 

Sometimes to save on symbols we write gq for q; (g;q). Two 
immediate properties of q; are 

q; '(e;q) = q', (3.2a) 

q;'(h;qo)=q;;, heH. (3.2b) 

The fact that the point transformations q; follow the compo
sition law of G leads to the functional relations 

q; (g2;q;(gl;q») = q;(g7KI;q) , 

i.e .• 

(3.3 ) 

The transformation law for the velocities q'is linear. with 
coefficients generally dependent on q. It involves the Jacobi
an matrix M(g;q) of the point transformation q;, with ele
ments 

M's(g;q) = Jq;'(g;q) . 
Jq' 

(3.4) 

The superscript (subscript) is the row (column) index. 
Then a point (q,v)eTQ consisting of qeQ and a velocity vec
torveTqQ is carried by geG to (q'.v')eTQ, whereq' is given 
by Eq. (3.1) and 

v" = M's (g;q)if. (3.5) 

In a compact way the action of G on TQ can be written as 
geG 

(q,v) ..... (q;(g;q),M(g;q)v). (3.6) 

The properties of q; , imply corresponding properties for 
M which help reduce the latter to its essential elements. Thus 
by differentiating Eqs. (3.3) and (3.2a), respectively, with 
respect to q we get a functional equation for M. and its value 
at the identity of G: 

M(g7KI;q) = M(g2;glq)M(gl;q), 

M(e;q) = 1. 

(3.7a) 

(3.7b) 

Two important consequences follow from here on suitable 
choices of arguments: 

M(g;q)-I =M(g-I;gq), (3.8a) 

(3.8b) 

We see from the second of these that the matrices M(h;qo) 
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provide us with a linear representation of the subgroup 
HeG which leaves the distinguished point qoeQ invariant. 
This is called the isotopy representation of H associated with 
the transitive action of G on G / H; it is of the same dimension 
as G/Hand will be writtenD(h): 

M(h;qo) = D(h), heH. (3.9) 

It will play an important role in the sequel. By setting q ..... qo, 
g ..... heH in Eq. (3.6) we see that the isotopy representation is 
the one by which the velocities v' at qo transform when one 
applies an element heH: 

heR 

(qo,v) ..... (qo.D(h)v). (3.10) 

The functional equation (3.7a) can be exploited to ex
press M(g;q) for general arguments entirely in terms of 
D(h) and a matrix function of q alone. 14 For this, some 
choice of an element I (q )eG must be made for each qeQ such 
that 

qJ (/(q);qo) = q. (3.11 ) 

We agree to set I(qo) = e. It is then easy to see that for any 
geG and qeQ, 

h(g,q) =./(gq)-lgl(q)eH. (3.12) 

Then by manipulating the arguments of the M's in Eq. 
(3.7a) and also using Eq. (3.8a) we obtain 

M(g;q) =M(/(gq);qo}D(h(g,q»)M(/(q);qO)-I. (3.13) 

Therefore M(g;q) is determined for all g and q by the isotopy 
representation matrices D(h) for all heH, and one Jacobian 
matrixM (/(q);qo) for each qeQ. This breakup ofM(g;q) sug
gests, in conjunction with the transformation law for the 
velocities q = v appearing in Eqs. (3.5) and (3.6), that we 
define auxiliary quantities weTq Q in this way: 

w=M(/(q);qO)-IV• (3.14) 

These quantities w' are like angular velocity components, 
being linear combinations of the true velocities v' with q
dependent coefficients. When q is mapped to q' = gq by geG, 
then weTq Q is taken to w'eTq• Q by a matrix of the isotopy 
representation: 

w' =D(h(g,q»)w. (3.15) 

With this machinery relating to the action of G on G / H, we 
can tackle the problem of constructing the t's. 

We consider stepAo first. Let uS denote by (.@ ~~ (g») the 
matrices of the representation (j,j) of G-this notation is 
hereafter used in place of the previous D (j.j) to avoid overuse 
of the letter D already earmarked for the isotopy representa
tion-and by r( j) the vector space carrying this representa
tion. The relevant values ofj are p,~, ... ; and for givenj we 
ask if we can find (2j + 1)2 functions VA (q) on Q (arranged 
into a column vector) obeying the functional equation 

V(gq) = .@(j)(g)V(q). (3.16) 

The necessary and sufficient conditions for existence of such 
V(q) can be derived by a three stage argument. First we set 
q ..... qo, g ..... heH in (3.16) to get a condition on 
V(qo) =/er(J): 

.@(j)(h)/=j, all heH. (3.17) 
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Suppose there is a nonvanishing solution f It means that 
r(j) contains a one-dimensional subspace spanned by j, in
variant under the representation of H obtained by restricting 
the representation .@(j) of G to H. (Of course there may be 
several independentf's.) Next we take q ..... qo, g ..... /(q) in 
(3.16) to get a determination of V(q) at all qeQ in terms off 

V(q) = .@(j)(/(q»)f. (3.18) 

BecauseofEq. (3.17), V(q) so determined is independent of 
the precise choice ofl(q) as long as the requirement (3.11) is 
met. The third and final stage is to confirm that V(q) so 
determined does obey condition (3.16); this is easily done, 
and once again it uses the property (3.17) off The result for 
step Ao of this three stage analysis can be expressed in two 
equivalent ways: (a) a nonvanishing quantity oftypej can be 
found on Q if and only if the representation .@(j)(h) of H 
contains the identity or trivial representation of H; and (b) 
r(j) must contain a vector/whose stability group is larger 
than or equal to H. 

Next we turn to step A I' the attempt to construct quanti
ties of type j linear in q, for j = O,p, .... It is convenient to 
express such a collection of (2j + 1) 2 functions on TQ, 
VA (q,q), as linear combinations of the w': 

(3.19) 

The property of V(q,q) is that when q and ware transformed 
to q' and w' by an element geG, following Eqs. (3.1) and 
(3.15), then V = Fw transforms by .@(j)(g): 

FA' (q')w" = .@~~(g)FB,(q)W'. (3.20) 

This means that FA, (q) must obey the functional equation 

Dr',(h(g,q»)FAt' (gq) = .@~~(g)FB,(q), (3.21) 

for all qeQ, geG. The general solution to this equation can be 
developed by a three-stage argument in the same pattern as 
with stepAo. First set q ..... qo' g ..... heH in (3.21 );F(qo) is then 
required to obey 

.@~~(h)FB'(qO) =Dr',(h)FAt' (qo), all heH. (3.22) 

The invariant interpretation of this requirement will be given 
later; for the present assume a nonzero F(qo) can be found. 
Next set q ..... qo' g ..... /(q) in (3.21), to determine F(q) at all 
qeQ in terms of F(qo): 

FA,(q) = '@~~(I(q»)FB,(qo). (3.23) 

Here in contrast to Eq. (3.18) ofstepAo, the choice of I(q) is 
relevant in determiningF(q) (Ref. 15). The third stage is to 
verifythatthisF(q) does obey the condition (3.21) forallg. 
It is easily verified that this is so, thanks to Eq. (3.22). The 
necessary and sufficient condition to be able to find a quanti
ty of type j linear in q is thus that there should be nonzero 
quantities FA, (qo) connecting .@(j)(h) and D(h) in the 
manner of Eq. (3.22). The interpretation of this intertwin
ing relation is as follows. Regard each column FA, (qo), r 
fixed, as a vector with (2j + 1) 2 components in r( j): the rth 
vector /, has FA, (qo) for its A th component. Then writing 
Eq. (3.22) as 

(3.24) 

we read it as requiring that the action of.@ (J) (h) on the rth 
vector /,er(J) must be to produce a linear combination of 
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all the f's with the matrix elements D ", (h) of the isotopy 
representation as coefficients. There is no condition here 
that these vectors/,. must be linearly independent. 

Step A2 can be handled in a similar manner. The 
(2j + 1)2 quantities VA (q,q) of type j, quadratic in q, are 
written as 

(3.25) 

with coefficient functions FAn (q) symmetric in rs. It is now 
easy to see that Eq. (3.20) is here replaced by 

FAn (q')W"W'S = ~~l1(g)FBrs (q)w'w', (3.26) 

which in turn leads to the basic functional equation 

~~11 (g)FBn (q) 

= D ",(h(g,q»)Ds's(h(g,q»)FArs' (gq). (3.27) 

The first stage of the three stage analysis is to take q--qo, 
g--hEll: then FAn (qo) must obey 

~fj~(h)FBrs(qO) =D",(h)Ds's(h)FArs' (qo)' 

all hEll. (3.28) 

The second stage is to set q--qo, g--l(q) in (3.27), which 
determines F( q) allover Q: 

FAn (q) = ~~l1(l(q»)FBn (qo)' (3.29) 

Here again, as with step A I' the choice of l(q) does affect the 
value of F(q) (Ref. 15). The third and final stage is to con
firm that theF(q) so determined does obey (3.27), and this 
is straightforward. The necessary and sufficient condition to 
be able to find a quantity oftypej on TQ quadratic in q is thus 
thatthere should be anonzeroF(qo) obeyingEq. (3.28). We 
can again interpret this in an intrinsic manner: We require a 
setofvectorsfrs =/.,Er(j), theA th component offrs being 
FArs (qo), which behave under the action of ~(j)(h) in the 
following manner: 

~(j)(h)/,.s =D",(h)Ds's(h)f"s" (3.30) 

Generalizing the requirements (3.17), (3.24), (3.30) in 
steps Ao, A I' A 2, the pattern for A 3, ... is clear. 

In order to solve the above requirements in any particu
lar case, it is more convenient to deal with their infinitesimal 
forms corresponding to the Lie algebra ~ of H. Let H a , 

a = 1, ... ,6 - dim Q, be a basis for~. They are linear combi
nations of the generators~, K j of g. The symbols~, K j , Ha 
will be used both for the abstract generators and for their 
representatives in any of the representations ~ ( j) (g) of G of 
interest to us. On the other hand, the generator matrices of 
the isotopy representation D(h) of H will be written (ha >'s, 
consistent with the arrangement of indices on M(g;q) and 
D(h). These matrices ha are easy to obtain from the Lie 
bracket relations of g. For, suppose we extend Ha to a basis 
for g by adjoining additional elements P" r = 1, ... ,dim Q. In 
a suitable neighborhood of the identity in G, eachgeG can be 
uniquely expressed as a product exp(q'P,)exp(saHa), so 
(q',sa) are (local) coordinates for G; whileexp(q'P,) andq' 
are (local) coset representatives and coordinates respective
ly for Q = G IH. By premultiplying exp(q'P,) by an (infini
tesimal) element of H and following through the changes 
caused in the q', we find that the matrices (ha )'s can be read 
off from the bracket relations involving an Ha and a P,: 
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(3.31) 

The infinitesimal versionsofEqs. (3.17), (3.24), and (3.30) 
can now be written. They are 

step Ao: Ha f = 0; 

step AI: Ha/,.=(ha)"J,,; 

(3.32a) 

(3.32b) 

step A2: Hafrs = (ha)",f"s + (ha)s'sfn" frs =/.,; 
(3.32c) 

and so on for the later steps A 3, .... 

We now apply the methods developed above to show 
that for the second-order internal spaces Q2' Q f, and Q7 
there are no ~'s at all and hence no possibility of coupling 
space-time and internal variables in these cases. We shall 
treat these Q 's in the sequence Q2' Q7' and Q f. The following 
notations for combinations of the generators ~, K j of g will 
be useful (the N's have been already used): 

NI =JI -K2, N2 =J2 +KI; 

J", =sinqJJ3+cosqJK3, 0<qJ<1T/2 or 1Tf2<qJ<11'; 

PI =JI +K2, P2 =J2-KI; (3.33) 

P", = cos qJ J3 - sin qJ K3• 

Subscripts a,b, ... will be used to go over the two "transverse" 
values 1,2. An elementary lemma relating to the representa
tions ~ (j) (g) of G forj>!, proved in the Appendix, will be of 
great use in the sequel. It states that if a vector jEr(J) is 
annihilated by Na and is an eigenvector of K3 with a real non
negative eigenvalue, thenfvanishes identically 

Naf= 0, a = 1,2} 

Kd=AJ, A>O 
=:}f= O. (3.34 ) 

The case (b = Gf F;: The four generators of F2 are J3, K 3, 

and Na , a = 1,2. To extend these to a basis for g we choose 
the two additional elements Pa, a = 1,2. The commutators 
ofthe form [H,P] appearing in Eq. (3.31) have the values 

[J3.Pa] = EabPb, 

[K3,Pa] = Pa, 

[Na.Pb] = 'MabK3 + 2EabJ3· 

(3.35) 

Therefore the 2 X 2 matrices that generate the isotopy repre
sentation of F2 can be read off: 

J3--(~ - ~), K3--(~ ~), Na --(~ ~). 
(3.36) 

(This is therefore a nonfaithful representation of F2.) Let us 
now examine step Ao for this case. We seek a vector fEr( j), 
forj>!, annihilated by all four generatorsJ3, K 3, andNa: by 
the lemma,fvanishes and so there are no quantities oftypej 
on Q2 for any j>!. Next we examine steps A., A2, ... . We can 
quite easily deal with the general stepAn for any n> 1. We are 
required to find vectorsfa a "'a Er(j), symmetric in all the 

I 2 n 

a's and with each a = 1,2, obeying on account of (3.36) the 
conditions 

Na fa,a, .. 'an = 0, 
(3.37) 
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The values ofj of interest here arej = O,p, .... Ifj = 0, the 
left-hand sides vanish, then so doesla,a, .. 'a. since n> 1. Ifj>!, 
the lemma immediately tells us again thatla, .. 'a. = O. There
fore no quantities oftypej on TQ2' for any j = O,!, ... , and of 
any degree n = 1,2, ... in the q, can be constructed. This com
pletes the prooffor this case that no;'s exist. 

The case Q7=G/F7: The three generators of F7 are K3 
and N a • We extend them to a basis for g by taking P I ,P2 as 
defined in (3.33) and P3 = J3• From the subset of commuta
tion relations of g, 

[K3,Pa] =Pa, [K3,P3] =0, 

[Na ,Pb] = 2/jab K3 + 2Eab P3, 

[Na,P3] = -EabNb, 

(3.38 ) 

we infer that the 3 X 3 matrices generating the isotopy repre
sentation of F7 are 

K,-G 
0 

~} 0 

N·-G 
0 

~} 0 (3.39) 

2 

N,_( ~ 
0 

~) 0 

-2 0 

Step Ao for Q7 can be handled as in the case of Q2: we need a 
vector IErU ), j>!, annihilated by Na and K3, and by the 
lemma 1= O. Therefore there are no quantities of type j on 
Q7 for any j>!. Turning next to stepAn for general n>l: we 
seek a system of vectors/,. r "'r ErU ), symmetric in the r's , , n 

and with each r = 1,2,3, behaving in a suitable way under 
action by Na and K3• The symmetry in the indices allows us 
to writeln,.n,.n, for these vectors where n I + n2 + n3 = nand 
n I is the number of 1 's, n2 the number of2's, n3 the number of 
3's in the collection r l r2 ' •• rn' Then by using the isotopy gen
erator matrices (3.39) and extending the pattern of Eqs. 
(3.32), we see thatln"n,.n, Er(j) must obey 

N 1fn l ,n2 ,N3 = 2n2fn"n2 - 1.N3 + l' 

N 2 fn ,.nz,N;>. = - 2n I In. - l,n2 .N3 + 1 , 

(3.4Oa) 

(3.40b) 

(3.4Oc) 

The range ofj values here is O,!, 1, .... Forj = 0, the left-hand 
sides vanish, so the only possibly non vanishing I is lo.o.n' 
But by taking, say, n l = 0, n2 = 1, n3 = n - 1 in (3.40a) we 
see that Io.o.n = 0 as well. For j>! we use a stepwise argu
ment. The lemma shows to begin with thatlo.o.n = O. Using 
this we see next that the two vectors II.o.n _ I and 10.I.n _ I 
must be annihilated by Na and are eigenvectors of K3 with 
eigenvalue + 1. By the lemma they must both vanish. At the 
next step the three vectors/2•0•n _ 2 ,/Un _ 2 ,/0.2.n _ 2 are seen 
to vanish; and so on for all/" "n,.n, . Thus no quantities of type 
jon TQ7' for any j = O,!, ... , and of any degree n = 1,2, ... in 
the q, can be constructed. In this case too, there are no; 'So 

The case Q r = G / Fr: The three generators of Fr are J tp' 
NI, and N2 • These are extended to a basis for g by adjoining 
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the three elements PI' P2, and P3 = Ptp of Eq. (3.33). The 
commutators among the two sets are 

[J<p,Pa] =cosrpPa + sin rp EabPb , 

[J<p'P3] =0, 

[Na,Pb] = 28ab (cos rpJtp -sinrpPtp) (3.41 ) 

+ 2Eab (sin rp Jtp + cos rp Ptp)' 

[Na,P3] = - sin rp Na - cos rp EabNb' 

Therefore the 3 X 3 matrices generating the isotopy repre
sentation of Fr are 

(

COS rp - sin rp 

Jtp..... Si~ rp co~ rp 

N I ..... ( ~ 
-2sinrp +2cosrp 

o 
o (3.42) 

N2 ..... ( ~ ~ 
-2cosrp -2sinrp 

We shall examine stepsAo,AI' andA2 in sequence in this 
case since unlike the two previous cases it is now a bit cum
bersome to deal directly with a general An. Let us first take 
Ao. For some j>! we seek a vector I annihilated by all the 
generators of Fr: 

(3.43 ) 

In the notation of the Appendix, the first two conditions 
determine I to be a multiple of the basis vector 1/JY!... j of the 
space r(j): 

Nal= 0=>1= c.1/Jj,i2 j . 

Now on this basis vector we have [Eq. (A7)] 

J31/Jj~i2j = 0, 

K31/JJ/2j = - 2NJ/2j' 
so the third condition onf, 

J<p 1= c.(sin rp J3 + cos rp K3)1/Jj~i2j 

= - 2j c. cos rp 1/JJ/2j = 0, 

(3.44) 

(3.45 ) 

(3.46) 

determines c = 0 since bothj and cos rp are nonzero. Thus we 
see fairly easily that there are no quantities oftypejforj>! on 

Qr· 
Next we take up step A I' Here for some j>O, we seek 

three vectors/,.Er(j), r = 1,2,3, obeying 

N'(1)~G 
0 -2Sm~)n 
0 2cosrp 12' 
0 o 13 

N'G}G 
0 

-2~~)~') 0 -2smrp h, 
0 o 3 

(3.47) 

n ( =~ sin rp 

DGJ Jtp 1 = - Si~rp cos rp 
0 
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For j = 0, since the left-hand sides vanish, and both cos fP 
and sin fP are nonzero, the vanishing of alII, follows. Thus 
there are no Lorentz scalars on TQ r linear in the q's. For 
j;;;'~: we see that/3 must be annihilated by No and Jtp' so by 
the argument just used for step Ao it follows that 13 = O. 
Using this we get forll and/2 : 

NJb = O~/o = cor/Jj/~j 
~JJa = -2jcosfPfa· (3.48) 

This combined with the third equation of (3.47) demands 
thatl" fulfill 

(
COS fP 

- sin fP 
sin fP) (II) __ 2' (II) 

f 
- 'JcosfP f . 

cOSfP 2 2 

(3.49) 

But this forces fa = 0 since the 2 X 2 matrix on the left has 
eigenvalues e ± itp that have nonvanishing imaginary parts. 
Thus the answer to step A I for Q r is that there are no quanti
ties oftypej linearin q for any j = O,p, .... 

For step A 2 , we need six vectors Irs =is,E'j/(j), 

j = O,~, ... , obeying 

111 - 4 sin fPl13 

112 2 cos fP 113 - 2 sin fP 123 

113 - 2 sin fPh3 

h2 4 cos fPl23 

123 2 cos fPI33 

133 0 

111 - 4 cos fPIJ3 

/12 - 2 sin fP 113 - 2 cos fP 123 

113 - 2 COSfPh3 
(3.50) = 

h2 - 4 sin fPh3 

123 - 2 sin fPI33 
0 

2 cos fP 111 + 2 sin fP 112 

- sin fP III + 2 cos fP 112 + sin fP h2 

cos fP 113 + sin fP 123 
- 2 sin fP 112 + 2 cos fP h2 

- sin fP 113 + cos fP 123 

33 o 

These effects of No and Jtp are obtained by iterating Eqs. 
(3.47) on each index on/,.. Forj = 0, since both cos fP and 
sin fP are nonzero, the vanishing of No and Jtp forces/" = O. 
(While the vanishing of/13'/23' and/33 is immediate, forlll , 

112' and/22 a little work is needed.) Forj;;;'~, the conditions on 
h3 are the same as onlin stepAo, therefore/33 = O. Using 
this, the conditions onl13 and/23 are the same as onll andh 
in step A I (after 13 = 0 had been established there), so 
113 = h3 = O. It remains to examine the conditions onfab' a 
and b = 1,2, taking into accountlr3 = o. We have to solve 

NJbc =0, 

(

111) ( 2 cos fP 
Jtp 112 = - sin fP 

122 0 

2 sin fP 
2 cos fP 

-2sinfP 
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(3.51) 

By a now familiar argument, the first two conditions onfab 
force each/ob to be a multiple of r/Jt- j and therefore an eigen
vector of J tp with eigenvalue - 2j cos fP. However the eigen
values of the 3 X 3 matrix appearing in the J tp condition are 
2eitp

, 2e - itp, and 2 cos fP corresponding to the combinations 
III - 122 - 2if12,f11 - 122 + 2if12' and/ll + h2' respectively; 
and each of these eigenvalues is definitely distinct from 
- 2j cos fP. It is by this delicate argument that we conclude 

that fab must also vanish, so the answer to step A2 is that 
there are no quantities oftypej = O,~, 1, ... on TQ r, quadratic 
in the q's. The analysis of steps A 3" •• follows a similar pattern. 

As we shall mention in the concluding section, both Q2 

and Q7 can be visualized geometrically even though they are 
not manifestly covariant, nevertheless the detailed analysis 
of this section is needed to see that there are no ~ 's in these 
cases as well as in Q r. 

IV. PHYSICAL NONMANIFESTL Y COVARIANT SOS'S 

The SOS's that have still to be examined, to see if nontri
vial ~ 's can be constructed, are Qs = G I Fs and Q fl 
= G IFfl' We shall tackle them in this section. For Qs a 
geometrical argument shows that nontrivial ~'s certainly ex
ist, while a complete treatment (here omitted) must use the 
methods of the previous section. For Q fl those methods are 
essential to show that ~ 's do exist. 

We take up Qs = G IFg first. The subgroup Fs is genera
ted by K3 and N 2• These generators belong to the su(1,1) 
subalgebra of 9 spanned by J2, K 3' and K I' This corresponds 
to the SO (2,1) subgroup of SO (3,1) acting on the dimen
sions 013, which is the stability group of the (unit) spacelike 
vector e2 = (0,0,1,0). Of course, K 3, K» and J2 separately 
annihilate e2• On the other hand, N2 is one of the three gener
ators belonging to the stability group of the positive lightlike 
vector eo + e3 = (1,0,0,1), the others being NI and J3• Of 
course, K3 does not annihilate eo + e3; rather, the corre
sponding pure Lorentz transformations scale eo + e3 by a 
positive factor. All these facts suggest that Qs can be ob
tained by a simple procedure from the space 
Q(si) =QI4=GIFI4 defined in Eqs. (2.12) and (2.13). 
The representative point (aI" bl-') = (e2 , eo + e3 ) ofQ(sl) is 
invariant under the one-parameter subgroup generated by 
N2• To accommodate the additional generator K3, we define 
an SO(3,1) invariant equivalence relation on Q(si) as fol
lows: 

(4.1 ) 

This freedom can be used to reduce the time component of 
b I-' to unity, when the space part of b I-' becomes a unit vector 
b. The quotient space Q(si)1 - can then be described as 
follows: 

Q(si)/- = {(al-',b)la2 = 1, bES2, aob=aO
}. (4.2) 

From the linear four-vector SOC 3,1) transformation law for 
the lightlike vector b I-' we get a nonlinear action by SOC 3, 1) 
on bes 2

; this combined with the SO(3,1) action on al-' as a 
four-vector fixes the action of SOC 3, 1) on Q(si)/ -. Any 
(al-' ,b) can be carried via SO (3,1 ) to the standard configura
tion if = (0,0,1,0), b = (0,0,1); and the stability group of 
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this configuration is easily seen to be generated by N2 and K3• 

Thus we have the result 

Qs = G 1Fs = Q(sl)/-. (4.3) 

This suffices to show that with Qs as an internal space, non
trivial ~ 's and coupling between internal and space-time 
variables certainly exist, since, for example, both ct' and ii" 
could be contracted with)cP. We shall be content with this 
remark, realizing that a complete analysis must use the 
methods based on the isotopy representation. 

In the case of the SOS Q fl = G I Ffl , not even as much 
of a geometrical picture as with Qs is easily available, and one 
has to rely totally on the methods of the previous section to 
demonstrate that nontrivial ~'s do exist. We shall now indi
cate how this happens. The subgroup Ffl is one dimension
al, with the single generator J",. Thus Qfl is a five-dimen
sional manifold, and the isotopy representation of Ffl is 
likewise five dimensional. The generator matrix for this rep
resentation is obtained by extending J", to a basis for 9 with 
the help of five additional elements P r , r = 1, ... ,5: PI and P2 

as in Eq. (3.33), P3 = N I, P4 = N 2, and Ps = P", of Eq. 
(3.33). The commutators of J", with the Pr are 

[J",.Pa] = cos ({J Pa + sin ({J EabPb, 

[J""Pa+ 2] = -cos({JPa+ 2 +sin({JEabPb+ 2, (4.4) 

[J""Ps] =0, a,b=I,2. 

Therefore the isotopy representation is generated by 

cos ({J - sin ({J 0 0 

sin ({J cos ({J 0 0 

J", ..... 0 0 - cos ({J - sin ({J 

0 0 sin ({J - cos ({J 

0 0 0 0 

We now analyze step Ao for Q fl : for somej>! we ask ifthere 
is a vector je'Y(j) annihilated by J", in the representation 
P,;(j) ofG: 

JJ'=O. (4.6) 

This question is easy to answer because in the canonical basis 
for 'Y< j), described in the Appendix, J", is diagonal: 

J", t/I~~m2 = (m2e-itp-mli"')t/I~~m2' (4.7) 

Since both cos ({J and sin ({J are nonzero, the only way this 
eigenvalue can vanish is when m I = m2 = 0, which restrictsj 
to integer values; and in that caselis unique up to a factor: 

I=c.t/I~!d, j= 1,2,.... (4.8) 

We conclude that it is possible to construct precisely one 
quantity oftypej (up to a factor) for each integer value ofj, 

II cos ({J sin ({J 0 0 

h - sin ({J cos ({J 0 0 

J", A 0 0 - cos ({J sin ({J 

h 0 0 - sin ({J - cos ({J 

Is 0 0 0 0 
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on Q fl . This already shows the existence of ~ variables, even 
without any q dependence. We can examine the structure of 
these quantities of type j on Q fl a little further. The value 
j = 1 corresponds to symmetric traceless rank-2 tensors, 
written in Cartesian form as tp,v; forj = 2 we have symmetric 
traceless rank -4 tensors t p,vpu' and so on. Now from Eq. (4.8) 
we see that within any representation space 'Y(j) a null ei
genvector of J", is always and only obtained by J3 and K3 
individually annihilating this vector 

J"f= Ck;::}J3/= K3/= O. (4.9) 

Using this, the Cartesian form of I/{~ is easily calculated to 
have only diagonal nonzero components 

too(qo) = ttl (qo) = t 22 (qO) = - t33 (qO) = 1, 

i.e., 

(4.10) 

As explained in the previous section, tp,v (qo) determines 
tp,v (q) elsewhere on Qfl' Now the casej = 2 can be built up 
fromj = 1 in a Lorentz invariant way: 

tp,vpu (q) = tp,v (q)tPU (q) + tp,p (q)tuv (q) + tp,u (q)tvp (q) 

- traces. ( 4.11 ) 

The removal of traces is easy since from Eq. (4.10) we have 
for all q: 

(4.12) 

At qo, since tp,v (qo) is annihilated by J3 and K 3, the method 
of construction guarantees that tp,vpu (qo) will also be annihi
lated by J3 and K 3, hence by J",. Therefore tp,vpu (q) of Eq. 
( 4.11) must be (apart from a factor) just the quantity of 
typej = 2 that would be obtained by starting with t/I~~d at qo 

and then using Eq. (3.18) to move to other points of Qfl' 
Similar arguments evidently work for j = 3,4, .... We con
clude that the basic algebraically independent symmetric 
traceless tensor on Q fl is the second-rank tp,v (q) for j = 1, 
all others being obtained from this one by Lorentz invariant 
methods. Moreover it can be easily checked that the stability 
group oftp,v(qo) is exactly SO(2) xSO(1,l) generated by J3 
and K 3 , no larger. The only algebraically independent ~ vari
able independent of q is therefore 

~=)cPXVtp,v(q)/( _X2). (4.13) 

These results concerning the algebraically independent 
quantities of type j we have been able to form on Q fl tell us 
something about the manifold structure of Q fl itself, but we 
shall come back to this after looking briefly at step A I' 

The values ofj relevant for stepA I arej = O,p, .... For 
any suchj, we seek vectors/,.E'Y(}), r = 1, ... ,5, which behave 
as follows under action by J", : 

II 
12 
A (4.14 ) 

h 
Is 
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These requirements are more conveniently written as 

J" (II ± ih) = e~i"(/1 ± ih), 
J" (/3 ±~) = - e± i"(J; ± ~), 
JJs=O. 

(4.15) 

Consider firstj = 0, when J" = O. We see immediately that 
of the five /,s, which are now real numbers, only Is can be 
nonzero. Settingls = 1, we see that we have succeeded in 
finding a Lorentz scalar s(q,q) linear in the internal veloc
ities 

(4.16) 

Despite appearances, s(q,q) is in fact independent of the pre
cise choice of l(q). Next let us consider values ofj>~. We 
know that in the representation ~ (j) of G, J" is diagonal in 
the canonical basis, with eigenvalues given in Eq. (4.7), 
while we require/,. obey Eqs. (4.15). Comparing the two, 
and subject to reality conditions, the/,. can only be 

II + ih - t/J~!l, II - ih - t/Jf.!..\,o , 
J; + ~-"A!d, 13 - ~-t/J~!~ I , ( 4.17) 

Is-t/J~!d· 
This restricts j to integer values, so quantities of type j on 
TQfl linear in q exist only forj = 1,2, ... [leaving aside the 
scalar s (q ,q) already constructed]. Moreover, for each such 
jwe find three linearly independent VA (q,q): one starts with 
only II and/2 nonzero, another with only 13 and~ nonzero, 
and the third with only Is nonzero. The last of these is imme
diately recognized to be simply related to the scalar s(q,q) 
and to the quantities oftypej on Q fl already formed in step 
Ao. Indeed, comparison of the last ofEqs. (4.17) with Eq. 
(4.8) shows that if we take II = ... = ~ = 0 in step A I' we 
simply reproduce 

t,.v(q)s(q,q), t,.vpu(q)s(q,q),... (4.18) 

as we would in any case expect. The other two possible 
choices for/,., however, lead to new tensors linear in q. 

It is obvious that quantities oftypej quadratic, cubic, ... 
in q will also exist and nontrivial Lagrangians involving cou
pling between x and the internal variables can definitely be 
constructed. However, a systematic attack on this problem is 
hampered by the fact that a simple geometrical description 
of Q fl is not easily obtained. We would like to make the 
following observations concerning the nature of Q fl' We 
have seen in step Ao that a symmetric traceless second-rank 
tensor t,.v (q) exists on Q fl' However, at each point q, the 
stability group of t,.v (q) is larger than, and contains, that of 
q. For example, at qo, the former is generated by J3 and K3 

and so is SO(2) xSO(1,1) with the topological structure 
S I XR; while the latter is Ffl generated by J" and with the 
structure of R. One might ask if any other linearly trans
forming quantity could be set up on Q fl such that its value 
together with that oft,.v (q) uniquely determine the point q, 
because by the previous remark the value oft,.v (q) certainly 
does not fix q. However, Eq. (4.9) shows that this is impossi
ble: any linearly transforming quantity invariant under J" is 
also invariant under J3 and K3 separately. While Qfl is of 
dimension 5, t,.v (q) takes values in the coset space G / 
SO(2) XSO( 1,1) and so can supply us with only four inde-
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pendent coordinates. The problem is to understand the na
ture of the fifth coordinate. In other words, we need to know 
how q is related to qo (more generally ql to q2) if t,.v (q) 
= t,.v (qo) [or t,.v (ql) = t,.v (q2)]' Comparing Ffl genera
ted by J" and SO(2) xSO(1,I) generated by J3 andK3, we 
deduce that the fifth coordinate is of the nature of an angle. 

We leave the study of the SOS's Q8 and Q fl at this stage, 
having satisfied ourselves that nontrivial Lagrangians can be 
constructed for particles with such internal structures. 

v. GENERAL PHASE-SPACE ASPECTS 

We have found many SOS's that permit nontrivial cou
pling of internal and space-time variables and construction 
of interesting Lagrangians. To set up a phase·space formal
ism for the internal spaces one may use a local approach 
varying from one SOS to another; or one may set up a for· 
malism that is as uniform as possible for all SOS's. In the 
former approach, one has (local) coordinates qr for Q ac
companied by canonical momenta P r' and the Legendre map 
involving the Lagrangian (2.1) is 

aiL' 
Pr = aqr . (5.1) 

The internal contributions S,.v to the SO(3,1) generators 
would be derived objects formed out of qr and Pro Alterna
tively, one can regard the S,.v themselves as a kind of gener
alized canonical momenta conjugate to the qr, with a suitable 
number of independent relations reducing the independent 
components of S,.v from 6 to dim Q. The advantage of this 
approach is that the S,.v are always globally defined quanti
ties on T*Q, while this may not be the case for the Pro We 
shall develop the necessary formulas to achieve this, and at 
the end specialize to the manifestly covariant cases. 

We begin with the action of infinitesimal SO (3,1) trans
formations on Q. An infinitesimal element of SO (3,1) can be 
written as 

A" v ==tf'v + if v' 
(5.2) 

Let the corresponding point transformation tp( A;q) be writ
ten to first order in the (U's as 

qr -+q,r ==qr +! ifvtp~v(q). (5.3) 

The 6 X dim Q functions tp ~v (q) determine, by integration, 
the transitive action of G on Q. Associated with them are the 
six vector fields 

(5.4) 

which obey the commutation relations of soC 3, 1) or g: 

[X,.v,xpu] = g,.pXvu - gvpX,.u + g,.uXpv - gvuXp,.' 
(5.5) 

The G action on Q naturally lifts to a canonical action on 
T*GwithgeneratorsS,.v which are functions on T*Q linear 
inp" 

S,.v = -tp~v(q)Pr' (5.6) 

The usual fundamental PB's among the q's and p's, 

{qr,pJ = 8;, {qr,q'} = {Pr'Ps} = 0, (5.7) 
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combined with Eq. (5.5) lead to the complete system ofPB's 

{q',q'} = 0, (5.Sa) 

{q',S/Lv} = -<p~v(q), (5.Sb) 

{S/LV'Spu} = g/LpSVU - gvpS/LU + g/LuSpV - gvuSP/L' 
(5.Sc) 

If we wish, however, we can regard these equations rather 
than (5.7) as the basic PB relations for T*Q. In that case 
however the proper number of restrictions on the S/LV must 
be included. These are easy to obtain. For a general point 
qEQ, let Hq C G be the corresponding stability group. The 
infinitesimal generators of Hq have parameters af'V obeying 

(5.9) 

These must be regarded as a system of linear conditions on 
af'V for given q. The general solution for af'V will involve 6-
dim Q independent parameters f" (typically a subset of com
ponents of af'V) and can be written 

af'V = f"t/J~V(q). (5.10) 

Putting these expressions into (5.9) and remembering that 
the f" are independent, we get the identities 

t/J~V(q)<p ~v (q) = 0 (5.11 ) 

characterizing the action of G on Q. These identities combine 
with the original definition of S/LV in Eq. (5.6) to give the 
expected number of (linear) restrictions on S/Lv: 

t/J~V(q)S/LV = 0, a = 1, ... ,6 - dim Q. (5.12) 

Once these restrictions are in hand, we can treat the S/LV as 
the basic internal momentum variables. Then the PB's 
(5.Sa) and (5.Sc) have a uniform appearance for all cases, 
while only (5.Sb) is related to the action of G on each parti
cular Q. 

If Q is one of those SOS's possessing a manifestly covar
iant description, as given in Sec. II, useful simplifications 
occur. The space Q can be described by an overcomplete 
system of variables S R, say, transforming by some generally 
reducible linear representation §J R S (g) of SO (3,1): 

SR __ S,R = §JRS(g)SS. (5.13) 

Typically, as shown in Sec. II, S may be a single four-vector, 
possibly normalized, a pair of mutually orthogonal four-vec
tors, etc. Correspondingly the S 's obey a set of Lorentz invar
iant relations which may be written as 

xes) = o. (5.14) 

[See, for instance, the restrictions appearing in Eqs. (2.2), 
(2.4), (2.6), (2.S), (2.10), and (2.12).] If these relations 
were to be used to eliminate some of the S 's in favor of the 
others, it would amount to making some local choice of inde
pendent q'. However, our aim is to avoid such elimination of 
S's and instead carry them all along subject to the restric
tions (5.14). Let a Lagrangian given as a function, 2', of X, 
q, q in Eq. (2.1), be viewed as a function 2" ofx,si: 

2'(x,q,q) = 2"(x,si). (5.15) 

It is understood that even if 2' is given the functional form 
of 2" is ambiguous. We must develop a way by which the 
Legendre map for S/LV can be easily written using 2" in a 
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manifestly covariant way. Let the infinitesimal generators of 
the representation §J (g) ofSO(3, 1) be '?/Lv' If q'were a local 
coordinate system for Q, their changes under an infinitesi
mal SOC 3, 1) transformation must produce the expected lin
ear changes in S R: 

fJq' = ~ af'v<p ~v (q) 

=}fJS R = ~ ar('?/Lv)R sS s. (5.16) 

We will now exploit the fact that the expression of the s 's in 
terms of the q's is, by definition, independent of the q's. Thus 
even if the transformation parameters af'V were to be made 
functions of the evolution parameter s, the implication 
( 5.16) would be valid. If we make the variations (5.16) on 
the two sides of (5.15) and equate the coefficients of if V we 
get the identities 

'( a2' £o S R a2" 
<P/LV q) aq' =~ ('?/Lv) S at R ' (5.17) 

Here we can treat the various components S R as though they 
were algebraically independent, as this causes no error in the 
calculationofS/Lv.PuttingtogetherEqs. (5.1), (5.6), (5.17) 
we get a manifestly covariant form for the Legendre map 
relating to S/Lv: 

S £os( R a2" 
/LV = - ~ ,? /Lv) S at R . (5.1S) 

One may convince oneself that the PB's among S/LV and S R 
cause the appropriate linear transformations on S: 

{S/LV'S R} = ('?/Lv)R sS S. (5.19) 

This manifestly covariant phase space formalism makes it 
unnecessary, for the SOS's listed in Sec. II, to eliminate re
dundant variables and to restrict oneself to independent q's. 
At the same time, the restrictions (5.12) on S/LV in any mani
festly covariant case can also be expressed using the S vari
ables quite easily, so at all stages the manifest covariance can 
be preserved. 

VI. MODEL BASED ON 013 

As an illustration of the general methods developed in 
the preceding sections, we discuss in this section the con
struction of the Lagrangian for a point particle with the SOS 
QJ3 as the internal space. The Lagrangian must obey the 
conditions coming from Poincare and reparametrization in
variances. In addition we shall require that it possess a cer
tain natural internal symmetry suggested by the nature of 
QJ3' and that it also leads to two reasonable primary con
straints. Thus we shall determine the form of the most gen
eral Lagrangian having all these four properties. It will then 
appear that this model is something like a scaled-down ver
sion of the original Hanson-Regge model, which had an in
ternal SO(3,1) symmetry; the advantage will be that the 
restrictions on the Lagrangian arising from the requirement 
of the primary constraints can be explicitly solved. 

The space QJ3 = G /FJ3 = Q(ss) can be visualized as 
consisting of pairs of spacelike orthonormal vectors (a/L,b /L), 
Eq. (2.10). The eight variables aIL, b/L are an example of the 
S R of the previous section, and give an overcomplete coordi-
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nate system for Q13' The Lorentz invariant restrictions 
(5.14) are in this case 

a2 = b 2 = 1, a.b = O. (6.1 ) 

From these follow three kinematic restrictions on the inter
nal velocities: 

a.a = b.b = 0, a.b = - b.a. (6.2) 

We can see that in the generic case the vectors aI-', b 1-', aI-', b I-' 
are a system off our linearly independent vectors; indeed one 
can exhibit such configurations consistent with (6.2), for 
example, 

al-' = (0,0,0,1), bl-' = (0,0,1,0); 

ill-' = (p,O,a,O), bl-' = (r,8,0, - a). 
(6.3) 

Configurations where this linear independence breaks down, 
while they certainly can occur, will be singular configura
tions and will be explicitly excluded in the sequel. We now 
define an internal SO(2) group acting on Q13' and commut
ing with the physical SO(3,1) action, as follows: 

(a) ..... (a') = ( co. s 0 sin 0) (a). 
b b ' - sm 0 cos 0 b (6.4 ) 

This group is naturally suggested by the manifestly covar
iant description of QI3 and is analogous to the internal 
SO(3,1) group occurring in the original Hanson-Regge 
model. We shall now require that the Lagrangian be invar
iant under this internal SO(2) group. In the spirit of Eq. 
(2.1), we must then build up a complete set of t variables 
which are moreover individually SO(2) invariant: the La
grangian can depend only on such t 's. Our approach will be 
to first find a complete set of t 's in the sense of Sec. II, then 
isolate those that are SO(2) invariant. 

Let us first look at the t's which do not involve X. Sub
ject to later making them homogeneous of degree zero in the 
velocities, the restrictions (6.2) limit us to four possible Lor
entz scalars: 

• 2 •• 2 
a.b, a , a.b, b . (6.5) 

We rearrange these into three combinations that are SO(2) 
invariant and one that changes under SO(2): 

a.b, a2 + b 2, a2b 2 _ (a.b)2 ..... SO(2) invariant; 

tan- I (2il.b /(a2 
- b 2») ..... SO(2) variant. 

(6.6) 

We now remark that it is algebraically simpler to divide 
through by powers of a.b rather than of x2 to obtain expres
sions homogeneous of degree zero in the velocities. Thus we 
obtain two SO (2) invariant t variables not involving x at all, 

tl = (a2 + b2)/(a.b)2, 

t2 = Wb 2 - (a.b)2)/(a.b)4; 
(6.7) 

and mention that the SO(2) transformation property of the 
last variable listed in (6.6) is 

tan- I(2il.b /(a2 
- b 2») ..... tan -1(2il.b /(a 2 - b 2») - 20. 

(6.8) 

Let us now include XI-' in the construction of t 's. Since 
aI-', bl-', aI-', and bl-' are generically linearly independent, we 
have exactly four independent Lorentz scalars involving XI-', 

x.a, x.b, x.a, x.b. (6.9) 
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In principle x2 can be expressed as a function of these, 
though we shall soon arrange for it to be one ofthe indepen
dent variables. The above four Lorentz scalars can be rear
ranged into three independent SO(2) invariant combina
tions and a fourth SO ( 2) variant one: 

(x.a)2 + (X.b)2, (x.a)2 + (X.b)2, 

x.a x.b - x.b x.a ..... SO(2) invariant, ( 6.10) 

tan- l (x.b/x.a) ..... SO(2) variant. 

This last combination changes by - 0 under the transfor
mation (6.4). Dividing through by suitable powers of a.b, 
we define three more SO(2) invariant t's as 

t4 = {(x.a)2 + (x.b)2}/(a.b)2, 

t5 = {(x.a)2 + (x.b)2}/(a.b)4, 

t6 = {x.a x.b - x.b x.a}/(a.b)3. 

(6.11 ) 

One more and the last such t is evidently the combination 

tan -1(2a.b /(a2 - b 2») - 2 tan-I(x.b /x.a). (6.12) 

However, this is an awkward variable and in its place we 
wish to use 

(6.13) 

That this is possible is shown by the following argument. 
Treating x2 as a dependent variable, we can always express it 
in the form 

x2 = (a.b )2<1>(tl,t2,t4,t5,t6' 

tan- I(2a.b /(a2 - b 2») - 2 tan- I (x.b /x.a»). 
(6.14 ) 

Now since there are four independent components to xl-', and 
xl-' appears only in the last four arguments of <1>, this function 
must depend in an essential way on these four arguments, in 
particular on the last of them. Therefore it should be possible 
in principle to tum Eq. (6.14) inside out and express the 
combination (6.12) in terms of tlo ... ,t6' This establishes that 
a complete set ofSO(2) invariant t's is given by Eqs. (6.7), 
(6.11 ), (6.13) and contains six variables. At this stage the 
most general SO(2) invariant Lagrangian is 

.Y(x,a,b,a,b) = a.bi(tl, ... ,t6) (6.15) 

and involves one real function! of six real arguments. 
At this point we restrict the Lagrangian further by de

manding that it leads to two primary constraints that we 
shall specify. They involve the momentum PI-' canonically 
conjugate to xl-', given in terms of Lagrangian variables by 

PI-' = ~~ = (a.b)-I{lil-'i3+ 2(x.aal-' +x.bbl-')i4 

+ 2(a.b) -2(x.a al-' + x.b bl-')j; 

+ (a.b) -I (x.a bl-' + x.b al-' 

- x.bal-' - x.abl-' )i6}' (6.16) 

Herejj stands for ai /atj , j = 1, ... ,6. The desired primary 
constraints are 

p.a;::::,O, p.b;::::,O. (6.17) 

It is convenient to use the complex combination z = a + ib 
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with a simple SO(2) transformation property. The demand 
on ..? can then be expressed as 

p.z = 2(a.b) -IX.Z(j; + ~ + !.i;;) 
- 2i(a.b) -2X.Z( ls + ~.i;;) ::::;0. (6.18) 

Now by straightforward algebra one can show that X.Z and 
X.Z are related by combinations of; 's: 

x.z = a.bx.z(i;6 + (;4;5 -;~ )1/2)/;4' (6.19) 

Using this in (6.18) we get the condition 16 

}3 +~+!}6 
+ (;6 - i(;4;5 - ; ~) 1/2)( ls + !}6)/;4 = 0, (6.20) 

that is,jis subject to two first-order partial differential equa
tions 

(a~3 + a~4 + ~ a~J) = 0, 

(a~5 + ~ a~J) = O. 

(6.21 ) 

These conditions make} a function of four particular combi
nations ofthe six; 'So Retaining the symbol! for this func
tion, the most general Lagrangian possessing all the proper
ties demanded is 

..?(x,a,b,il,b) = a.b!(;I';2';3 - ;4';4 +;5 - 2;6), 
(6.22) 

and involves one real function! offour real arguments. 
For the phase-space treatment of this model we can use 

the manifestly covariant formalism set up in the previous 
section. In place of individual momenta conjugate to a'" and 
b "', we have a tensor S",v jointly conjugate to both a'" and b "'. 
Taken together, the fundamental PB relations for the inter
nal phase space, consistent with Eq. (6.1), are 

{a""av} = {a""bv} = {b""bv} = 0; 

{S",v,ap} =gp.pav -gvpa"" 

{S",v,bp} = gp.pbv - gvpb,..; 
(6.23 ) 

In addition of course we have the usual PB's among xl" and 
PI" The single expected condition on S",v' Eq. (5.12) in the 
present model, is also consistent with the PB's (6.23) and is 

(6.24) 

This arises from the fact that an infinitesimal Lorentz trans
formation that does not alter a given pair (a"', b"') has pa
rameters ())pv proportional to EpvpuaPb u. This condition on 
Spy reduces the number of its independent components to 5, 
the dimension of QI3; it is also consistent with the Legendre 
map [ana10gofEq. (5.1)]: 

S = a a.!L' _ a a..? + b a..? _ b a..? 
pv I' ailv vailI' '" ab v v ab I' . 

(6.25) 

Concerning the full phase-space treatment of this model 
(which will be taken up elsewhere) the following remarks 
may be made. An overcomplete set of phase-space coordi
nates is made up of ;xI', pI', a"', b 1', and S ",v. The generator for 
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the internal SO(2) group introduced in Eq. (6.4) is a" b v 

S",v since it has the following PB's with a and b: 

{apbvS",v,a,t} = - b,t, 

{a"'bvS",v,b,t} =a,t. 
(6.26) 

Therefore it will tum out to be a constant of motion. It is of 
course both Lorentz and SO(2) invariant. More generally, 
one expects that there will be five algebraically independent 
Lorentz and SO (2) invariant variables on phase space, made 
up out of p,a,b, and S. Among these would be included _ p2, 
the square of the invariant mass, and the square of the Pauli
Lubanski vector. This counting can be seen to be correct by 

going to the special Lorentz frame in whichpi' = ..r=/1efJ, 
a = el , and b = e2 , after which there is no more freedom of 
Lorentz transformation. In this frame, Eq. (6.24) makes S03 

vanish, so each of the other five components of Spy is a possi
ble candidate for a Lorentz scalar combination of variables. 
Addingp2 to this set, we get a total of six independent Lor
entz scalars that can be built out of p, a, b, and S. [Note that 
this is after the primary constraints (6.17) have been taken 
into account.] Since SO (2) is a one-parameter group, it then 
follows that there will be five quantities in the model that are 
both Lorentz and SO(2) invariant. One then expects that 
the reparametrization invariance will lead to a Lorentz and 
SO(2) invariant primary constraint, independent of the al
ready specified primary constraints (6.17), which will be the 
generator of reparametrizations. This will be a relationship 
among the five variables mentioned above, which should 
arise by expressing each of them in terms of the four Lagran
gian quantities ;1' ;2';3 - ;4';4 +;5 - 2;6' and then elimi
nating the latter. 

VII. CONCLUDING REMARKS 

In this paper we have continued the study of classical 
relativistic particles with internal structure initiated in I, and 
developed methods for a thorough analysis of second-order 
internal spaces. The large number of possible SOS's has been 
separated into those permitting a manifestly covariant de
scription, and others; and in order to deal with the latter, 
special methods based on the isotopy representation have 
been devised. The Lagrangian formalism has been used 
throughout, and in the manifestly covariant cases it is ob
vious that nontrivial coupling between space-time and inter
nal variables (and velocities) is always possible. A particu
larly interesting result has been our finding that the internal 
spaces Q2' Qr, and Q7 are unphysical, though perfectly ad
missible from the point of view off our-dimensional kinema
tics, in that it is impossible to couple the space-time variables 
and the internal spaces in these cases. This is a result that one 
might not have anticipated in advance. While the spaces Q r 
are not easily visualized, both Q2 and Q7 do admit of geomet
rical descriptions. Thus Q2 is just the unit sphere S 2 in three 
dimensions, and it can be easily obtained from Q6 = Q( I) by 
the same kind of quotienting procedure that was used in Sec. 
IV to develop a picture of Qs. [Starting with the description 
of Q6 = QU) given in Eq. (2.6), one defines the equivalence 
relation aP - Ka'" for all K > 0, then passes to the quotient Q~ 
- which is Q2'] Another way to realize that Q2 = S 2 is via 
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the Iwasawa decomposition G = SU (2 )AN, A being genera
ted by K3 andNby NI andN2• SinceF2 hasJ3, K3, andNa as 
generators, we see that Q2 = G /F2 = SU(2)AN / 
U(1)AN<::::<SU(2)1U(1) =S2. Again by the Iwasawa de
composition, the space Q7 = G / F7 is seen to be the SU (2) 
group manifold, since F7 = AN. In spite of the fact that both 
Q2 and Q7 are visualizable in these ways, though of course 
not manifestly covariantly, they tum out to be incapable of 
coupling to the space-time variable if". 

The impossibility of coupling in the case of Q7 is under
standable and reassuring form the point of view of the Han
son-Regge model. 7 In that model, the starting internal space 
is SO (3,1); and by imposing several primary constraints and 
invariant relations one arranges things so that at the end only 
SO( 3) survives as the physical internal space. One can natu
rally ask whether the procedure of Hanson and Regge could 
be significantly simplified by using from the very beginning 
the manifold of SO( 3) as the internal space. Since, again by 
the Iwasawa theorem, SO(3) does admit a transitive action 
by SO (3,1), at first sight one would suppose that this should 
definitely be possible, and only an element ofSO(3) and its 
"velocity" would occur as internal variables in the starting 
Lagrangian. However, our analysis showing that no cou
pling between :Jcf' and TQ7 is possible demonstrates that there 
is no way to bypass the route taken in the Hanson-Regge 
model to achieve the desired result that the final surviving 
internal space be SO(3). 

A possible coupling scheme which, if it had occurred, 
might have been termed trivial, would be this 17: one is able to 
construct Lorentz scalars s(q,q) homogeneous of some de
gree in the q, leading to corresponding t's by division by 
suitable powers of ( - x2

), but there are no quantities of type 
f>~ on Q or TQ capable of coupling to xl", :Jcf'xv, ... . In such a 
case, the only possible dependence of the Lagrangian on :Jcf' 
would have been through x2

, and one would have had sepa
rate invariances under the action ofSO(3,1) on xl" and on Q. 
Of course with a manifestly covariant Q this situation does 
not arise, and only Qs and Q fl remain to be examined from 
this point of view. However, the results of Sec. IV show that 
with Qs a vector al" is available for direct coupling to xl", and 
with Qfl' even though thescalars(q,q) has been found [Eq. 
(4.16)], there does exist a tensor tl"V (q) which could be con
tracted with :Jcf'xv. Thus the kind of trivial coupling visua
lized in the opening sentence of this paragraph does not actu
ally arise. 

TABLE I. Pattern of SOS's. 

Manifestly covariant 
Q's 

Not manifestly 
covariant, but 
visualizable, Q's 

Not easily 
visualizable Q's 

Coupling 
permitted 

Q3,Q.,Q6,QI2 
QI3,Q]4>Q'5 
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No coupling 

Q2,Q7 

Qf 

Our analysis of the SOS's Qs, Q fl has been carried only 
far enough to show that they are physically admissible. A 
more complete treatment is definitely worthwhile and re
mains to be given. This involves among other things develop
ing a "picture" for Q fl' allowing us to handle it to some 
extent geometrically. The model based on Q13 that we have 
offered in Sec. VI as a "scaled-down" version of the Hanson
Regge model has been chosen so that the most general form 
of the Lagrangian could be explicitly displayed. This was a 
motivation for .the choice of primary constraints (6.17). One 
could also consider as an alternative the primary constraints 
chosen by Hanson and Regge, namely 

p"'Sl"v:::::O, 

which are quadratic in the conjugate momenta. To ensure 
them, one has to subject the function! to nonlinear partial 
differential equations, as in the Hanson-Regge model, so 
that an explicit form for the Lagrangian cannot be obtained. 
Even within our mode4 a complete analysis of the con
straints and phase-space structure remains to be given. 

Finally, since the number ofSOS's is so large in variety 
and complexity as compared to the FOS's studied in I, we 
present Table I containing the principal results of this paper, 
so that one can get a feeling for the situation concerning 
SOS's in a compact way. The various SOS's are separated on 
the one hand into those possessing a manifestly covariant 
description, those that are otherwise visualizable, and those 
that cannot be easily pictured at all; and on the other hand 
into those permitting coupling to x, and those which are 
unphysical. 

We plan to come back to some of the questions raised 
above, as well as to the general problems of quantization and 
of couplings to external fields, elsewhere. 

APPENDIX: A PROPERTY OF SL(2,C) 
REPRESENTATIONS 

In the conventions adopted in this paper, the SL(2,C) 
generators ~, K j obey the commutation rules 

[Jj,Jd = - [Kj,Kd = Ejk/J/, 
(At) 

[~,Kd = Ejk/K/. 

These differ from the conventional relations by a factor i: 
stated precisely, the present generators are - i times the 
usual ones. If we define the two combinations 

(A2) 

then as is well known Sj and S'j independently obey the 
angular momentum commutation relations: 

[Sj,Sk] = Ejk/S/, 

[S'j,S'k] = Ejk/S '/, 

[Sj,S'd =0. 

The expressions for N 1, N2, J3, and K3 are important: 

NI =J1 -K2 =S+ +S'_, 

N2=J2 +K1 = -i(S+-S'_), 

J3 =S3 +S'3' 

K3= -i(S3- S '3)' 
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Here we have used the familiar raising and lowering combi
nations 

S± =S. ±iS2, S' ± =S'. ±is'2' (A5) 

The finite-dimensional representation !iJ (j,J,) of 
SL(2,C) is obtained by choosing the spinj. representation 
for Sj and the spinj2 representation for S'j" Whenj. = j2, we 
have denoted !iJ (jJ) by !iJ (j). The canonical basis for !iJ (j,J,) 

is made up of simultaneous eigenvectors of S3 and S' 3: 

In this basis both J3 and K3 are diagonal: 

J3 f/!<,,!,:'/"''> = - i(m. + m2)f/!<,,!,':/"~), 
K .I,(j"j,) = (m - m ).I,(j"j,) • 

3'f'm 1.m2 2 1 'f/m.,m 2 

(A7) 

The only vector annihilated by N. and N2 is the one with 
maximum m. and minimum m2, since it must be annihilated 
by the raising operator S + and the lowering operator S ' _ : 

No f/! = O::::}S+f/! = s' -f/! = 0 

(AS) 

This vector is an eigenvector of K3 with eigenvalue 
- (jl + j2) which cannot be positive. This proves the 

lemma of Sec. III. In the text, where only the casejl = j2 = j 
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is used, the basis vectors .I.:./",!:) are written more simply as 
.,., I' 2 

.I,(j) 
'f'm 1.m2· 
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geneous Lorentz transformations. They must therefore not be confused 
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A Hamiltonization procedure valid for both singular and nonsingular mechanics is proposed. 
A comparison with Dirac's theory (for singular systems) is developed. 

I. INTRODUCTION 

A centenary tradition prescribes the use of Legendre 
transformations in the passage from the Lagrangian to the 
Hamiltonian description of classical mechanics.' We will 
prove that this prescription must not be some a priori postu
late. It will appear as a consequence in nonsingular prob
lems, and it will give inadequate results in singular ones.2 

In Sec. II we define the problem in its generality. Sec
tions III and IV will be devoted to solving two extreme cases 
of mechanics: the nonsingular and the pure singular cases, 
respectively. The intermediate (mixed) case is discussed in 
Sec. V. In Sec. VI our results are compared with those ob
tained by Dirac's theory. 

II. ANALYSIS OF THE HAMILTONIZATION PROCEDURE 

Consider a Lagrangian function 

L(q" ... ,qN,ih, ... ,iIN,t) =.L(q,q,t), 

with the usual equations of motion [given by Hamilton's 
principle 8SL(q,q,t)dt = 0] 

!!.. [aLl _ aL =0 (i= t, ... ,N). (1) 
dt aq; aq; 

Irrespective of the fact that Eqs. (t) are a first- or sec
ond-order differential system, it is possible to define a new 
function H(p,q,t) =.H(p",,,,PN,q,, ... ,qN,t) and new equa
tions of motion 

H(p,q,t) =. 'Lp;q; - L(q,q,t), 

. _aH 
q;=-, 

ap; 

(2) 

(3a) 

. aH 3b p;=. --. ( ) 
aq; 

Equations (2) and (3a) define a partial differential 
equation for H: 

H='Lp; aH _L(q,aH,t) , 
ap; ap 

(4) 

which has a complete solution given by 

H' = 'LA;p; -L(q,A,t), (5) 

the A; being arbitrary functions of the q; variables. 
Under certain circumstances Eq. (4) has an additional 

solution: the envelope (singular) solution. This solution ex
ists whenever some functions A; (i = t, ... ,k) are defined as 
functions of p and q through 

aH' 
-=0 (i= t, ... ,N) (6) 
aA; 

(which define the envelope solution). 
The case where k = N is called the pure nonsingular 

mechanics and will be studied in Sec. III. The case where Eq. 
( 6) does not define any function A; is discussed in Sec. IV, 
and will be called the pure singular case. The mixed problem 
will be studied in Sec. V. 

III. THE PURE NONSINGULAR MECHANICS 

Consider the Lagrangian function with N degrees of 
freedom, 

L(q,q,t) = 'L aij (q,t)q;qj - V(q,t) (i,j = 1, ... ,N), 

(7) 

with the Hessian matrix (a 2L/aq; aqj) = (aij) #0. 
The partial differential equation for H obtained from 

Eqs. (2) and (3a) now reads 

aH aH aH 
H='Lp;--'L aij--+V, (8) 

ap; ap; apj 

The corresponding complete solution is 

(9) 

where the A; are arbitrary functions of the q; variables. The 
envelope solution is obtained from 

aH' 
aA. =O=p; -2'L aijAr -+p; =2'LaijAj" (10) 

I 

This algebraic system is easily solved (since det aij #0): 

t 
AI ="2 'LblmPm 

(where b is the inverse of the matrix a; i.e., ~aijbjm = 8ij)' 
In consequence it is easy to construct the envelope solu

tion 

1 
HE ="4 'L bimPIPm + V, 

which is the usual Hamiltonian. As it should be, since condi
tion (to) and Eq. (3a) imply P; = 2~aijqj = aL /aq;. This 
( usual) definition of the momenta cannot be maintained in 
the subsequent cases. 

As a consequence aH /aq; = - aL /aq; since 

+ 'LPI aAI _ aL _ 'L aL aAI 
aq; aq; aA I aq; 

aH 

_ aL _ 'L aAI (aL _ PI) . 
aq; aq; aA I 

And the compatibility among the set of Eqs. (3) and the 
Lagrangian description is automatically achieved here, since 
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IV. THE PURE SINGULAR CASE 

Consider the most general Lagrangian for the pure sin
gular case with N degrees of freedom: 

L(q,q,t) = L ai (q,t)qi - V(q,t). (11 ) 

The corresponding Hamiltonian must obey the linear partial 
differential equation obtained from Eqs. (2) and (3a), 

aH 
H= L (Pi -ai) -+ V, (12) 

api 

whose general solution is 

H(p,q,t) = L Gi (q,t) (Pi - ai ) + V(q,t), (13) 

with the Gi being arbitrary functions. 
The Hamiltonian equations of motion [Eqs. (3)] read 

. aH G 
qi =-a = 0 

'Pi 
(14a) 

. aH aGj av aaj 
Pi = - - = - L (Pj - aj ) - - - + L Gj - . 

aqi aqi aqi aqi 
(14b) 

Due to the arbitrary character ofthe functions Go compati
bility of the above equations with Lagrangian ones is not 
automatically achieved. It must be imposed. 

From Lagrangian equations we have 

. av aaj . 
ai = --+ L-qj (i,j= 1, ... ,N). (15) 

aqi aqi 

These equations together with Eq. (14a) gives the functions 
Gi as solutions of the algebraic system: 

av + aai =" [aaj _ aai ] G. ~ J (i,j = 1, ... ,N). 
aqi at aqi aqj 

(16) 

The second set of Hamiltonian equations [Eq. (14b)] 
furnishes [using also Eq. (15)] 

aGo 
Pj -OJ = - L -a ' (Pi -ai) (i,j= 1, ... ,N). (17) 

qj 

These equations are, in fact, definitions of the momenta 
Pi" (The solutions Pj = aj' i.e., Pj = aL faqj, imply that 
H = Vand, in consequence qj = 0, which are incompatible 
with Lagrangian equations.) 

In fact, Eq. (17) is a linear first-order partial differential 
equation for the variables Ci (q) =Pi - ai. Its general solu
tion is given in terms of an arbitrary function. Each particu
larization of this arbitrary function furnishes a definition for 
the variable Pi (different from aL faqi). 

As an example consider the Lagrangian 

L = q2qI - 2qIq2 + qIq2. (18) 

Following the steps previously described [Eqs. (13)-
( 16)] we construct the Hamiltonian 

H = GI (PI - q2) + G2(P2 + 2qI) - qIq2, 

where 
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GI = - qIf3 and G2 = q2f3. (19) 

Consequently, 

H = (q2P2 - qIPI)f3. (20) 

The functions P i are defined as solutions of the following 
system [Eqs. (17) and (19) ] : 

PI - q2 = (PI - q2)f3, 

P2 + 2iJI = - (P2 + 2qI)f3. 

These solutions are given by 

PI = qdI (qIq2)' P2 = qd;(qIq2)' 

the.t: being arbitrary functions of the product q Iq2 (as re
marked before, we must have!I =1= 1 and.t;=I= - 2). 

V. THE INTERMEDIATE (MIXED) CASE 

Consider the solution given by Eq. (5) for the partial 
differential equation for the Hamiltonian H, 

H' = LAiPi -L(q,A) (i= 1, ... ,N). (5) 

In the mixed case some relations Ai =Ai(q,p) (i = 1, ... ,k) 
will be determined by the envelope condition: 

aH' . 
- = 0 (I = 1, ... ,k). (6) 
aA i 

These conditions imply that Pi = aL faqi (i = 1, ... ,k) 
( as discussed in Sec. III), and can be substituted in Eq. (5) 
resulting in a Hamiltonian that depends only on q, Pi' and A j' 
where i = 1, ... ,k andj = k, ... ,N. 

The following steps of the Hamiltonization procedure 
are the same as in the pure singular case. 

As an example consider the Lagrangian function 

L=!a(q)qi +b(q)q2- V(q). (21) 

The corresponding complete solution of the partial differen
tial equation for the Hamiltonian is [Eq. (5)] 

H' =AIPI +A2P2 - !aA i - bA2 + V. 

Equations (3a) furnish 

. aH' 
qi =-a =Ai (i= 1,2). 

'Pi 
The envelope condition [Eq. (6)] gives 

PI =aA I =aqI = a~ . 
aqI 

Then the resulting Hamiltonian is 

H' = (1f2a)pi + (P2 - b)A2 + V. (22) 

The corresponding Euler-Lagrange equations for the above 
Lagrangian [Eq. (21)] are 

and 

d ( .) 1 aa. 2 ab. av - aqI =--ql +-q2--
dt 2 aql aql aql 
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with 

iII = (ab ± ((!!!..)2 + 2 aa aV]1I2) (aa )-1. 
aql aql aq2 aq2 aq2 

To finalize the momentum P2 is defined as the solution 
of the equation 

aH 1 aa 2 P2= --=--PI 
ilq2 2a2 aq2 

_ (p2 - b) aA2 _ av + ab A2, 
aq2 aq2 ilq2 

which may be written as [using Eq. (23) andpi = aiId 

d ( b aA 2 b - P2 - ) = -- (P2 - ). 
dt aq2 
Defining C(q) =P2 - b, we have the following system: 

dql = dq2 = dC (24) 
iII A2 aA21aq2 

To clarify the procedure let us consider the following 
Lagrangian: 

L =! q2iIi + qliI2 - qlq2' 

i.e., a = q2' b = ql' and V = qlq2' 
Then the Hamiltonian is [Eq. (22)] 

H' = (1/2q2)pi + (p2 - ql)A2 + qlq2' 

where 

A2 = - (1 ± 2~1 + 2q1 )q2/(1 + 2q1)' 

Then Eq. (24) furnishes 

C(q) = q~( [1 - 2q1 ± ~1 + 2q1 ]q2) 

and 

P2 = ql + C(q), 

where F is an arbitrary function and the momentum P2 is 
defined by the choice of F. 

VI. FINAL REMARKS 

Our approach unifies, into the same formalism, singular 
and nonsingular problems. It is worthwhile to compare our 
approach to the well-known Dirac theory for singular me
chanics.2 

Starting from the same Lagrangian [Eq. (11)] Dirac 
defines the momentum P as a "weak equality" 

809 

aL 
Pi;:::;-.. 

aqi 

His "canonical Hamiltonian" is 

Hc;:::;V. 
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(25) 

And the "total Hamiltonian" is given by 

H;:::;V+vmt/lm' (26) 

where the t/lm are the constraints of Dirac's theory, 

aL 
t/lm =Pm --.-=Pm -am;:::;O. (27) 

aqm 

These constraints must obey the consistency condition 
of Dirac's theory, 

(28) 

which results in a so-called2 "relation of type I." These rela
tions are given by 

(
aam aam') av aam, 

Vm aqm' - aqm ;:::; aqm' + -at . (29) 

If we compare this result with that obtained in the pre
vious section we observe that this equation is identical to Eq. 
(16), where Vm plays the role of Gi • 

To clarify, consider as an example the Lagrangian used 
in Sec. IV [Eq. (18)]. 

Equations (29) imply that 

VI;:::; -q1/3 and V2;:::;q2/3, 

and, finally Eqs. (26) and (27) give the Hamiltonian 

H;:::; (q2P2 - qIPI)/3, 

which is identical to the one given in Eq. (20). 
If we now consider the Lagrangian given by Eq. (21) 

(Sec. V), then the Hamiltonian given by Dirac's theory is 

H;:::;Hc +vmt/lm. 

ASPI = aiIl andp2;:::;b, then 

Hc;:::;pi/2a + V 

and the constraint of the Dirac's theory is 

t/l =P2 - b;:::;O. 

The "total Hamiltonian" is 

H;:::;pV2a + V + V(P2 - b), 

wherev=ih· 
This Hamiltonian is identical with that given by Eq. 

(22) (Sec. V) if we consider that there A2 = iI2' 
Finally we observe that the Hamiltonization procedure 

for pure singular and mixed cases developed in this paper 
and in Dirac's theory have identical results. But our ap
proach is a more general Hamiltonization procedure, and 
does not need "weak equalities," a variational procedure in
volvingp's, q's, and iI's, a "super phase space," etc. 
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The "strength" of a set of field equations (first defined by Einstein as the number of Taylor 
coefficients of field variables that could be chosen arbitrarily) is used to show that the amount 
of initial data required by the electromagnetic formulation of Maxwell's theory in free space is 
equal, without approximation, to that required by the potential formulation. In each 
formulation, the strength is interpreted in terms of the amount of initial data required to 
provide a solution of the Cauchy initial-value problem and in terms of the invariance 
properties of the formulation. Equality of the strengths of the two formulations of Maxwell's 
theory is used to support the assertion that knowledge of the strengths of other established field 
theories provides a means for predicting the possible existence of unknown formulations of the 
theories. 

I. INTRODUCTION 

In his investigations of field theories, Einstein I used the 
concept of "strength" of a system of field equations for com
paring the worth of one system with that of another. He 
assumed that each field variable could be written as a Taylor 
series in the neighborhood of a point P. By repeated differen
tiation and evaluation of the field equations at P, he could 
obtain relations among the Taylor coefficients. In effect, the 
field equations would specify some coefficients in terms of 
others so that, in principle, many coefficients could be eli
minated from the series. The remaining Taylor coefficients 
would be free data; they could be chosen freely provided they 
remained consistent with the field equations. Einstein called 
the amou~t ofthis free data the strength of the system offield 
equations. 

Several authors have examined strengths of field theor
ies. Penney,2 Hoenselaers,3 Burman,4 and Murphy5 present
ed strengths of various field theories including those of Ein
stein, Maxwell, Weyl, Klein-Gordon, and Dirac. 
Mariwalla6 showed that approximations of the strengths of 
Maxwell's potential and electromagnetic formulations were 
equal. Schutz7 suggested that the strength of a field theory 
was related in a well-defined manner to the number and 
character of arbitrary functions required to specify a solu
tion locally. 

As a supplement to the works of Mariwalla6 and of 
Schutz,7 this paper presents verification that the strength of 
each formulation of Maxwell's theory can be interpreted as 
initial data required to yield a solution to the field equations 
of that formulation in free space. Also, the amount of initial 
data required for a solution of the electromagnetic formula
tion is shown to be equal, without approximation, to that 
required for a solution of the potential formulation. 

Exact equivalence of the strengths of the two formula
tions leads to a useful concept. An investigator familiar with 
the second-order potential formulation, but ignorant of the 
first-order electromagnetic one, could reasonably decide to 
examine the possibility of expressing the content of Max
well's theory by a set of first-order field equations simply 
because the character of initial data predicted by the 

strength of the potential formulation is precisely that of a set 
of first-order differential equations. And, of course, the in
vestigation would meet with success. This suggests that the 
concept of strength of a field theory may be useful in finding 
unknown formulations of established field theories. 

II. COUNTING TAYLOR COEFFICIENTS 

A function VCr') expressed as a Taylor series in the 
neighborhood of a point P(x~,x!,x;,x!) has the form8 

00 1 [ a )n V(xIL ) = L --. (X
a 

- X;)-;; Vp ' 
n~O n. ax (2.1 ) 

where the SUbscript on V indicates that derivatives of V are 
evaluated at P. Taking VCr') as a function of order9 zero, we 
identify an nth-order Taylor coefficient as the coefficient of 

(xo _ X~)H (Xl _ X!)1 (x2 _ x!)J (x3 _ x! )K, 

where H, I, J, and K are non-negative integers and 

n=H+I +J +K. 
In particular, Vp is the only zeroth-order coefficient, ( v'a ) p 

are the four first-order coefficients, and! ( v'a,p ) p are the ten 
second-order coefficients. 10 

The number of nth-order Taylor coefficients appearing 
in the description of V is 

N~ = (n + 3) !l3!n! (n;;;oO), (2.2a) 

N~ =0 (n<O). (2.2b) 

By induction the number of nth-order coefficients for a ze
roth-order function of m variables is II 

N'; = (n + m - l)!I(m - 1)!n! (n;;;oO, m;>I), 
(2.3a) 

N';=O (n<Oorm<I). (2.3b) 

An easily derived relation exists among numbers ofTay
lor coefficients of different orders: 

(2.4 ) 

This relation is used below repeatedly in simplifying expres
sions for the strength of field equations. 
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In following sections, the total number offree nth-order 
Taylor coefficients of one set of functions is compared with 
the total number of free nth-order Taylor coefficients of an
other set of functions for the case in which the functions of 
one set are linear combinations of first derivatives of the 
functions of the second set. Assigning each function an order 
permits accurate comparison of Taylor coefficients having 
the same dimensions. Since V(xP ) is taken here to be a func
tion of order zero, its nth-order coefficients contain nth de
rivativesof V, and V hasN~ nth-order coefficients. If Vwere 
an rth-order function, its nth-order Taylor coefficients 
would contain (n - r)th derivatives of V, and Vwould have 
N~ _ r nth-order coefficients. In Sec. III, Maxwell's poten
tials A a are shown to be functions of first order. Maxwell's 
electromagnetic components F a{3 are then necessarily of sec
ondorder. 

III. STRENGTH OF MAXWELL'S EQUATIONS 

If the concept of strength of a field theory is to be of 
value, then the strength should be independent of the man
ner in which the theory is presented. One would expect the 
theory to have the same strength when considered from dif
ferent points of view. 

In this section, strengths of the electromagnetic and po
tential formulations of Maxwell's theory in free space are 
derived and shown to be precisely equivalent. Conformal 
invariance of the theory is included in each case. Accounting 
for conformal invariance in the analysis lays the groundwork 
for expanding the concept of strength beyond its previous 
treatment in the literature. For simplicity, both formulations 
are written in Minkowski coordinates. 

A. Electromagnetic formulation 

Maxwell's equations in free space are 

c a=Fa{3.{3 = 0, (3.1a) 

D a{3a=Fa{3.a + F aa.{3 +F{3a.a =0. (3.1b) 

The electromagnetic contravariant and covariant compo
nents, Fa/3 and Fa{3' are antisymmetric in a andp. They are 
related by 

Fa{3 = 1Jaa1J{3PFap ' (3.2) 

where 1J00 = 1, 1J II = 1J22 = 1J33 = - 1, and 1Ja{3 = 0 for 
a =l=P. 

The 4 + 4 field equations contain six linearly indepen
dent field variables, F01' F02' F 03' F 12, F 23, and F 31 , where the 
first three are electric field components and the last three are 
magnetic field components. Each is taken to be of order 2 
and each is a function off our independent variablesxl'. Each 
function has its own Taylor series so that the six functions 
together contain 6N~ _ 2 nth-order Taylor coefficients. 

Many relations derivable from the field equations exist 
among these nth-order coefficients. Repeatedly differentiat
ing each of the eight field equations n - 3 times yields a total 
of 8N~ _ 3 relations among the nth-order coefficients of Fa{3. 

These 8N~ _ 3 relations are not independent because the 
field equations themselves are not independent. Two identi
ties exist among the field equations: 
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C:;' = 0, (3.3a) 

Da/3a,p - D/Ju,..,a + D apaJJ - Dpa{3,a = 0, (3.3b) 

where no two indices in (3.3b) have the same value. These 
identities exist because of the functional forms of the field 
equations; they would be valid even if the field equations did 
not state that C a and D a/Ju were zero. Repeatedly differenti
ating the identities n - 4 times yields a total of2N~ _ 4 iden
tities among the 8N~ _ 3 relations. Therefore, there are just 
8N~ _ 3 - 2N~ _ 4 independent relations among the nth-or
der coefficients resulting from the field equations. This num
ber should be subtracted from the total number of nth-order 
coefficients of Fa{3. 

The field equations are invariant with respect to a con
formal transformation,12 which consists of the space-time 
translation 

x P = x'P + f!', (3.4a) 

the proper homogeneous Lorentz transformation 

(3.4b) 

the scale transformation 

(3.4c) 

and the acceleration transformation 

x P = (1 + 2aax~ + aaaa x '{3xp ) - I (x'P + aPx,ax~ ). 

(3.4d) 

The four parameters f!' of order - 1, the six parameters AP a 

of order zero, the single parameter s of order zero, and the 
four parameters aP of first order play no part in the character 
of the fields themselves. These 15 parameters can be chosen 
to eliminate four Taylor coefficients of order - 1, seven co
efficients of order zero, and four coefficients of first order 
from those of F a{3. Since from (2.3) N! = 0 for n <0 and 
N! = 1 for n;;;.O, this indicates that 

4N!+ 1+ 3N! - 3N!_1 - 4N!_2 

should be subtracted from the number of nth-order Taylor 
coefficients of F a{3. 

The number Z~ offree nth-order coefficients13 is then 

Z~ = 6N~_2 - (8N~_3 - 2N~_4) 

- (4N!+ I + 3N! - 3N!_1 - 4N!_2)' (3.5) 

The first three terms on the right-hand side can be eliminat
ed by repeated use of (2.4 ). The result is 

Z~ = 4N~_2 + 2N~_2 - 4N!+1 

- 3N! + 3N!_1 + 4N!_2' (3.6) 

This can be made more amenable to interpretation if it is 
noted from (2.3a) and (2.3b) thatN! = Oforn <OandN! 
= 1 for n;;;,Oand if the result in (3.6) is expressed in the form 

Z~I = -4, Z~= -7, Zf= -4, (3.7a) 

Z~ = 4N~_2 + 2N~_2 (n;;;.2). (3.7b) 

Interpretation of Z ~ is straightforward. The negative 
numbers for Z ~ I' Z~, and Z f appear because of the con
formal invariance of the system. The quantity N ~ _ 2 is the 
number of nth-order Taylor coefficients for a second-order 
function of three variables, and N ~ _ 2 is that for a second-
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order function of two variables. Thus Z: for n>2 corre
sponds to four second-order functions of three variables and 
two second-order functions of two variables. These func
tions can be chosen freely provided they are consistent with 
the field equations. The selected functions can be viewed as 
initial data, which can be correlated with the Cauchy initial
value problem as applied to the field equations,7 an interpre
tation that is verified by an example in Appendix A. 

This development complements the work of Mariwalla6 

in several respects. Conformal invariance is included for the 
first time here in the derivation of Z:, resulting in (3.7a). 
The result for Z: in (3.7b), together with its detailed inter
pretation, is original here. 

Mariwalla6 expressed Z: and the strength Z~ for the 
potential formulation in the infinite series 

Z: =N~_2 (Eo +EI/n +E2/n2 + ... ), 
Z~ = N~_2 (Po +PI/n + P2/n

2 + ... ), 
(3.8a) 

(3.8b) 

where all Em and Pm were constants. Mariwalla6 showed 
that Eo = Po = 0 and EI = PI' The coefficients Em and Pm 
for m > 1 were not considered. In effect, this meant that Z: 
and Z ~ were shown to be equal only for large n. Exact equiv
alence of the free data for the two formulations did not fol
low from this result. 

In Sec. III B, Z ~ is derived and shown to be equal to Z : 
for all n. Next, Z ~ is shown to represent initial data required 
to yield a solution of the potential formulation of Maxwell's 
equations in free space. Finally, the suggestion that the 
strength concept may be useful in finding unknown formula
tions of established field theories is discussed. 

B. Potential formulation 

In free space, the potentials A U satisfy the field equa
tions 

(3.9) 

Since each of the functions A U is offirst order, the four func
tions together contain 4N~ _ I nth-order Taylor coefficients. 

The system is conformally invariant so that, as in the 
electromagnetic formulation, 

4N!+ 1+ 3N! - 3N!_1 - 4N!_2 

should be subtracted from the number of nth-order coeffi
cients of A U to account for conformal invariance of the sys
tem. 

Many relations, derivable from the four field equations, 
exist among these nth-order coefficients. Repeatedly differ
entiating (3.9) n - 3 times yields a total of 4N ~ _ 3 relations 
among the nth-order coefficients. The 4N~ _ 3 relations are 
not independent, however, because the four field equations 
are not independent. An identity exists among them: 

K':a = o. (3.10) 

This identity comes about because of the form of the field 
equations. It would be valid even if K a were not zero. Re
peatedly differentiating this identity n - 4 times yields 
N: _ 4 identities among the nth-order relations. Therefore, 
there are just 4N ~ _ 3 - N: _ 4 independent relations among 
the nth-order coefficients. This number must be subtracted 
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from the total number of nth-order coefficients describing 
A U to account for the field equations. 

The field equations (3.9) exhibit gauge invariance. 
They remain unchanged by a gauge transformation 

(3.11 ) 

where O(xI') is an arbitrary function of order zero. Many of 
the nth-order coefficients of A U can be removed by perform
ing a gauge transformation. Such coefficients should not be 
included in the number offree nth-order coefficients because 
they are not necessary for describing the field; they can be 
transformed away. 

Since the gauge function 0 is of order zero, N~ nth
order coefficients are required to describe it. However, the 
linear transformation 

0=0'+8, (3.12) 

where 8 is any constant of zero order, leaves the gauge trans
formation (3.11) itself unchanged. Since 8 plays no role in 
describing the gauge transformation, the quantity 
N! - N! _ 1 should be subtracted from the number of nth
order coefficients describing O. This means that 
N~ - (N! - N! _ 1 ) must be subtracted from the number 
of nth-order coefficients of A U in order to account for the 
gauge invariance of the field equations. 

The constant 8 can be interpreted as a quantity corre
sponding to the parameter s associated with the scale trans
formation (3.4c) in a conformal transformation. The quan
tity s is dimensionless. Its order is arbitrarily taken here to be 
zero. Taking the order of 8 to be equal to the order of s 
requires both 8 and 0 to have order 0, A a to have order 1, 
and Fa/3 to have order 2. 

The number Z ~ of free nth-order coefficients 14 for the 
potential formulation is then 

Z~=4N~_1 - (4N~_3 -N~_4) 

- (N~ - N! + N! _ 1 ) 

- (4N!+1 +3N! -3N!_1 -4N!_2)' (3.13) 

It should be noted that the gauge function 0 and the con
stant 8 play essential roles in the development of (3.13); if 
they were not considered, the calculated number offree nth
order coefficients would be incorrect. 

The expression on the right-hand side of (3.13) can be 
simplified by repeated use of (2.4 ). The result is 

Z~ = 4N~_2 + 2N~_2 - 4N!+ 1 

- 3N! + 3N!_1 + 4N!_2· 

Comparing (3.14) with (3.6) yields 

Z: = Z~ (all n). 

(3.14) 

(3.15 ) 

This agreement between the strengths of the electromagnetic 
and potential formulations means that each formulation re
quires exactly the same amount of initial data for a solution 
to the respective set of field equations. Of course, the form of 
the initial data in each formulation is expected to be differ
ent, but this does not detract from the significance of ( 3.15) . 

Verification that Z ~ of (3.14) represents the amount of 
initial data required for a solution of (3.9) begins with an 
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examination of (3.9) in expanded form: 

rlk A ~.k - 7]00 A ~.o = 0, 

7]OOA j = _ ,.JkA t + 7]ijA a '. 
,0,0 '/ J,k ,aJ 

(3.16a) 

(3.16b) 

The form of (3.16) precludes the determination of A ° at time 
t + at even if A a and A ~ are known everywhere at time t. 
This impasse is overcome by imposition of a gauge condi
tion, which here is taken to be that of Lorentz: 

A:'a=O. (3.17) 

As Mariwalla6 showed, a gauge condition does not change 
the strength Z ~ of the potential formulation if an appropri
ate constraint is imposed on the gauge function n used in any 
gauge transformation. Equation (3.17) remains unchanged 
under any gauge transformation for which the gauge func
tion n satisfies l5 

7]afJn,aJJ = O. (3.18 ) 

Including (3.17) in the strength calculation adds N! _ 2 to 
Z~, while including (3.18) in the strength calculation sub
tracts N! _ 2 from Z ~. 

Equation (3.14) can be written, with the aid of (2.4), in 
the form 

Z~= (4N~_1 +2N~_2 +N~_2) - (N~ +N~_I) 

- (4N!+1 +2N! -2N!_1 -4N!_2)' (3.19) 

Terms in the first set of parentheses correspond to initial 
data required to yield solutions ofthe field equations (3.9) 
and the Lorentz condition (3.17) together. Terms in the 
second set of parentheses correspond to initial data required 
to yield solutions of the constraint (3.18) on n. Thus initial 
data in the form of four first-order functions of three vari
ables, two second-order functions of three variables, and one 
second-order function of two variables are required to yield 
solutions of (3.9) and (3.17) for A a. Initial data in the form 
of one zeroth-order function of three variables and one first
order function of three variables are required to yield a solu
tion of (3.18) for n. Since n plays no physical role in the 
description of the field, the solution for n can be used in a 
gauge transformation (3.11) to eliminate irrelevant data in 
Aa. 

It is not obvious that the amount of initial data of the 
first set of parentheses in (3.19) is sufficient to yield solu
tions of the four field equations (3.9) and the Lorentz condi
tion (3.17) for A u. An example demonstrating that they are 
sufficient is given in Appendix B. 

Terms in the third set of parentheses of (3.19) corre
spond to the reduction in initial data permitted by a space
time translation (3.4a), a homogeneous Lorentz transfor
mation (3.4b), and an acceleration transformation (3.4d). 
The difference between the coefficients of N! - N! _ I in 
(3.19) and (3.14) indicates that the system is no longer in
variant with respect to a scale transformation (3.4c). 

Equation (3.14) shows that the amount of initial data 
required for the set of second-order field equations (3.9), 
relating functions of first order, is precisely the same as the 
amount of initial data required for a set of first-order differ
ential equations relating functions of second order. If an in-
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vestigator, unaware of the existence of the electromagnetic 
formulation, obtained the result of (3.14) for the potential 
formulation, he might feel compelled to seek a reformulation 
of the theory in the form of eight first-order differential equa
tions having two identities of second order. He would expect 
the equations to relate six dependent variables, each of which 
could be written as a linear combination of first derivatives of 
A CT. He would also expect the equations to exhibit conformal 
invariance. He could not be certain that the first-order equa
tions existed, but he could be sure that they would have the 
predicted form if they did exist. And, of course, the investi
gator would meet with success in this case. 

These results for Maxwell's theory suggest that the con
cept of strength of a field theory as described here may be 
useful in obtaining unknown formulations, together with 
their invariance properties, of established field theories. 

APPENDIX A: INITIAL DATA FOR THE 
ELECTROMAGNETIC FORMULATION 

Presented here is an example demonstrating that the 
number of Taylor coefficients of (3. 7b) corresponds to ini
tial data required for a solution to the electromagnetic for
mulation of Maxwell's theory. Suppose Fo1 , F02' F23, and F31 
are given at all points in space at timexo = 0, and F03 and FI2 
are given at all points on the x3 = 0 plane at XO = O. These six 
initial conditions constitute an example offour second-order 
functions of three variables and two second-order functions 
of two variables that can be chosen freely. 

With these initial conditions given, Maxwell's equations 
provide solutions at all points in space for all time. The com
ponents F03 and FI2 are found at all points in space at time 
XO = 0 from (3.1a) with a = 0 and from (3.1b) with a = 1, 
f3 = 2, and 0' = 3: 

F03(0,x1,x2,(n + 1)1l.x3) =F03 - (F01,1 +F02,2)1l.x3, 
(Al) 

F12(0,x1,x2,(n + 1 )1l.x3) = F12 - (F23,1 + F31 ,2 )1l.x3, 
(A2) 

where the right-hand sides are evaluated at (0,x1,x2,nIl.x3) 
and where the relations FOj = - FOj from (3.3) have been 
employed. The quantity 1l.x3 is incremental length and n is an 
integer running from 0 to ± 00. 

The electric field components FOj and the magnetic field 
components Fjk are found for all time, respectively, from 
(3.1a) with a = j and from (3.1b) with a = j, f3 = k, and 
0'=0: 

FOj«n + l)1l.x0,xm) =Foj - (FjI.1 + Fj2,2 +Fj3,3)1l.x°, 
(A3) 

Fjd(n + l)1l.x0,xm) =Fjk + (FOkJ -Foj,dll.x°, (A4) 

where the right-hand sides are evaluated at (nll.x° ,xm), 
where Il.x0 is the speed of light times incremental time, and 
where n is an integer running from 0 to ± 00. The relations 
FOj= -Foj andFjk=Fjk from (3.2) have been employed 
in arriving at (A3). 

APPENDIX B: INITIAL DATA FOR THE POTENTIAL 
FORMULATION 

Presented here is an example demonstrating that the 
terms in the first set of parentheses of (3.19) correspond to 
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the amount of initial data required for a complete solution of 
the potential field equations (3.9) and the Lorentz condition 
(3.17). 

If initial data for the determination of A U are taken to be 
A u(O,xm), A ,~(O,xm), A ~ (O,xm), and A :0 (O,xl ,x2,O), then 
(3.17) gives A ~o (O,xm): 

A ~ (O,xm) = - A ~ (O,xm). (Bl) 

The remaining initial condition A :0 (O,xm) is found first 
by combining (3.9) and (3.17) and writing the result for 
a=O: 

o 'kO B2 A ,0,0 + TJ' A J,k = O. ( ) 

Next, differentiating (3.17) with respect to XO gives 

o . 0 B3 A ,0,0 + A ~,o = . ( ) 

Subtracting (B3) from (B2) and solving for (A :0 ) ,3 yield 

(A:0 ),3 =rlkA~,k - (A,~),l - (A~0),2' (B4) 

The right-hand side is known at all points in space at XO = o. 
Since A :0 (O,XI,x2,O) is known, A :0 (O,xm) can be found from 
(B4) by stepping the x 3 coordinate. 

Since the components A u(O,xm) are given and since 
A ~ (O,xm) are now known, the components A u(xa) can be 
found from (3.16b) and (3.17) everywhere for all time by 
stepping the time coordinate. 

Finally, ifinitial data for .0. is given in the form offunc
tions for .0. (O,xm) and .0..0 (O,xm), a complete solution for .0. 
at all points in space-time can be found from (3.18) by step
ping the time coordinate. In effect, the amount of initial data 
required for finding a complete solution for .0. can be re
moved from the amount of total initial data required for a 
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solution for A u by performing a gauge transformation. 

'A. Einstein, The Meaning of Relativity (Princeton U. P., Princeton, NJ, 
1955), 4th ed., p. 133. 

2R. Penney, J. Math. Phys. 6, 1607 (1965). 
3C. Hoenseiaers, Prog. Theor. Phys. 58, 1185 (1977). 
4R. Burman, Czech. J. Phys. B 27, 113 (1977). 
'G. L. Murphy, Int. J. Theor. Phys. 18, 323 (1979). 
oK. H. Mariwalla, J. Math. Phys. 15,468 (1974). 
7B. F. Schutz, J. Math. Phys. 16, S55 (1975). 
"Greek indices take on values 0,1,2,3, while Latin indices take on values 
1,2,3. Repeated indices are summed. 

9The order of a function here is a number describing the dimension of the 
function relative to a reference function whose order is a number chosen 
arbitrarily. The derivative with respect to x a of a function of order r has 
order r + I. Multiplying a function of order r by x a yields a function of 
order r- I. 

IOPartial differentiation of a variable Q" with respect to XU is denoted by 

Q~u' 
"The quantity on the right-hand side of (2.3a) was designated C;') by Ein

stein,' and later [:;'] by Mariwalla.6It is designated here by N:;', a symbol 
more easily displayed, read, and manipulated algebraically. 

'2T. Fulton, F. Rohrlich, and L. Witten, Rev. Mod. Phys. 34, 442 (1962). 
'3Equation (13) of Mariwalla6 contains a minor error; the upper limit on 

the summation should be d - 2 rather than d. With this change, with 
d = 4, and with n replaced by n - 2, Eq. (13) of Mariwalla's paper re
duces to the first three tenns on the right-hand side of (3.5). The last four 
tenns on the right-hand side of (3.5) were not obtained by Mariwalla 
since he ignored conformal invariance of the system. 

I4Mariwalla's6equationjust below his Eq. (16) reduces ford = 4 and for n 
replaced by n - I to the first four tenns on the right-hand side of (3.13). 
Mariwalla did not obtain the fifth and sixth tenns of (3.13) because he did 
not consider the transfonnation (3.12), and he did not obtain the last four 
tenns on the right-hand side of (3.13) because he did not consider confor
mal invariance of the system. 

"J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1965), p. 
lSI. 
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In affirmative, the equivariant inverse problem for Maxwell-type Euler-Lagrange expressions 
is solved. This allows the proof of the uniqueness of the Maxwell equations. 

I. INTRODUCTION 

It is very well known that Maxwell equations can be 
written in covariant form as! 

F ij Ji IJ = , (1.1 ) 

*FijIJ = 0, (1.2) 

where Fij is a skew-symmetric tensor and *Fij = 1JijhkF hk . 

Equation (1.2) is equivalent to the existence of a covector 
field tPi such that 

Fij=tPi,J-tPJ,i' (1.3) 

The Maxwell equations can be deduced from a vari
ational principle as follows. If 

L=L(gij;tPi;tPi,J)' (1.4) 

then from a variation of tPi we obtain as Euler-Lagrange 
equations, 

( 1.5) 

on choosing 

L = JgFijFij' (1.6) 

Eqs. (1. 5) become (1.1). 
The left-hand side of ( 1.1) has two properties of covar

iance: (1) by a transformation of coordinates it changes as a 
vector; and (2) by a change of gauge, i.e., by a transforma
tion ofthe type tPi -+tPi + f/J,i> where f/J is a scalar, it is invar
iant. These properties are also possessed by the Lagrangian 
( 1.6). However, the last assertion is not mandatory since the 
Lagrangian does not have, in general, any physical meaning, 
although the Euler-Lagrange expressions do have a mean
ing. The main purpose of this article is to prove that the 
situation already encountered with the Maxwell equations is 
found always in spaces of dimension 4, i.e., the assumption of 
the two covariance properties for the Euler-Lagrange ex
pressions implies that the Lagrange is equivalent to (it has 
the same Euler-Lagrange expressions as) a Lagrangian with 
the same properties.2 This solves for the affirmative the equi
variant inverse problem3 for Maxwell-type Euler-Lagrange 
expressions. 

Precisely, we consider a quantity 

B i = B i(gij;gij,h ;tPi;tPi,J;tPi,Jh) ( 1.7) 

such that 

(i) B i is a vector, 

(ii) B i is gauge invariant, ( 1.8) 

(iii) B i = E i(L!) for L! of the type (1.4). 

Here we do not assume any covariance property for L! 

with respect to transformations of coordinates or changes of 
gauge. We will prove that (1.7) and (1.8) imply the exis
tence of L = L (gij ;tPi ;tPi,J ), which is a gauge-invariant scalar 
density such that Ei(L) =Bi. 

II. THE EQUIVARIANT INVERSE PROBLEM 

The condition (iii) in (1. 8) written in full is 

B i - L i L i,J;hkg L i,j;h.I, - - hk,J - 'f/h,J 

- !(L i,j;h,k + L i,k;h,J)tPh.kJ' (2.1) 

whereL i = aLlatPi,L i,J = aL latPi,J' andL hk = aLlaghk . 

The coefficients of (2.1) depend only on gij' tPi' and tPi,J' 

Since B i is gauge invariant, by the replacement 
theorem4 we have 

B i -Hi IHijhF 2 HijhkF 
- - '2 hJ - "3 hk IJ' (2.2) 

where 

Hi =L i(g .. ·O·l F .. ) Hijh =L i,J;h(g .. ·O·! p.) 
9' '2 1J ' 1J"2 IJ ' 

Hijhk = !(L i,J;h,k + L i,k;h,J)(gij;O;! Fij)' 
(2.3) 

Since B i is a tensorial density, the same is true for 
aBilatPh,kJ' From (2.1) this derivative is 
!(L i,J;h,k + L i,k;h,J). ThenHijhk defined by (2.3) is also a ten-
sorial density. Hence, by (2.2), Hi -! HijhFhJ is a vector 
density and depends only on gij and Fij . It is known5 that 
such vector densities are zero, and so we obtain 

B i 2 HijhkF = -"3 hklJ . (2.4) 

Denoting Wijhk = !(L i,j;h,k + L i,k;h,J) , from (2.1) and 
(2.2) we deduce 

WijhktPh,kJ = Hijhk(tPh,kJ -tPk,hJ) + ( ... ), (2.5) 

where in ( ... ) we have gathered the terms that do not de
pend on tPh,kJ . From the equality of the cross derivatives it is 
easily obtained that Wijhk = Whkij, and by (2.3), Hijhk 

= Hhkij. Also, Wijhk = WikhJ is valid and so Hijhk = HikhJ. 

Differentiating (2.5) with respect to tP a,be and taking 
into account the mentioned symmetries, we have 

(2.6) 

Changing i with a and c with b in (2.6) and subtracting the 
resulting equation to (2.6), it follows that 

Habei + H acbi _ H icba _ Hibea = O. (2.7) 

Changing a with c and b with i in (2.7) and subtracting the 
resulting equation to (2.7), we have H acbi = H ibca, or else 

(2.8) 
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Denoting 

Tijhk= _!(Hijhk_Hijkh), 

it follows that Tijhk is a tensor, such that 

B i = ,fgTijhkFhk Ij , 

and besides, 

Tijhk = _ T jihk = Thkij. 

Using Theorem 3 in Kerrighan,5 we deduce 
Tijhk =A *Fij *Fhk _B(Fik *Fjh _Fih *Fjk 

_Fjk *Fih +Fjh *Fik ) + CFijF hk 

+ W(ihg jk _ ikgjh) + E1]ijhk, 

(2.9) 

(2.10) 

(2.11 ) 

(2.12) 

where A, B, C, D, and E are scalar concomitants of gij and 
Fij' Then 

Bi = ,fg{(A *FhFhk +B(FhFhk + *FijFhk ) 

+ CFijFhk)Fhklj + DFijlj}. (2.13) 
I 

Since B i is a Euler-Lagrange expression, it satisfies cer
tain identities6

: 

B i;j,hk = B j;i,h\ (2.14 ) 

Bi;j,h= _Bj;i,h+2 a~k (Bj;i,hk), (2.15) 

.. " a "h a 2 "hk B';J=BJ',' __ (B);I,) + (BJ;" ). (2.16) 
axh axhaxk 

It is easy to see that (2.14) is satisfied identically. Let us 
see what restrictions (2.15) imposes onA, B, C, and D. It is 
known 7 that there are functions A I' ..1.2, ..1.3, and ..1.4 of two real 
variables such that 

A = Al «(J,t/J) , B = ..1.2 «(J,t/J) , 

C=A3«(J,t/J), D=A4 «(J,t/J); 

where 

(2.17) 

(J=*FijFij' t/J=FijF;j' (2.18) 

Equation (2.15) gives rise, in view of (2.13), to the fol
lowing: 

{2 aAI (F hk *Fac *Fib _ Fab *F ic *Fhk) + 2 aA2 (FhkFac *F ib _ FabFic *Fhk ) + 2 aA2 (*FhkFab *F ic _ *F *FiCF hk ) 
at/J at/J a(J ab 

+ 2 aA2 (*FhkFacF 1b _ *FabFicFhk) + aA4 (*Fhk~i~b _ *Fhk~b~i _ 2 *Fabghig"c) 
a(J a(J 

+ aA4 (Fhk~i~b _ Fhk~b~i _ 2FabghigkC) + A2(*F ibghagkc +! *Fhkib~a _! *Fhkia~b) 
at/J 

+A3(Fibghagkc+!Fhkib~a_!Fhkia~b)} (t/Jh,kc -t/Jk,hc) + (i~) = ( ... ), (2.19) 

where (j~) denotes symmetrization of the previous 
expression with respect to i and a, and where we have gath
ered in ( ... ) all the terms that do not depend on the second 
derivatives of t/Ji' 

It is known8 that given a point on the underlying mani
fold there is a coordinate system such that, at the point 

C
1 0 0 

V' 
(g,) ~ ~ 0 

0 
0 0 (2.20) 

C 
a 0 

~} -a 0 0 
(Fij) = ~ 0 0 

0 -{3 

from where we deduce 

(F') ~(~ 
-a 0 

~} 0 0 
0 0 
0 -{3 

(2.21) 

('F') ~( -;~ 
2/3 0 

~) 0 0 
2a' 0 0 

0 -2a 0 
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I 
Differentiating (2.19) with respect to t/J a,be and choos

ing j = a = 1, c = b = s = 4, and r = 3, we obtain 

4a aA4 + "1£.1 aA4 = 2aA. + {3.~ . 
a(J ~at/J 2 3 

(2.22) 

Differentiating (2.19) with respect to t/Ja,be and choos
ing j = a = 4, c = b = s = 2, and r = 1, we have 

4/3 aA4 - 2a aA4 = 2/3..1.2 - aA.3· 
a(J at/J 

(2.23 ) 

Let us suppose for the moment that det(Fij ) ;60. Then 
from (2.22) and (2.23) it follows easily that 

A = 2 aA4 ..1.3 = 2 aA4 • (2.24) 2 a(J , at/J 
Differentiating (2.19) with respect to t/J a,be and choos-

ing now a = b = 1, c = j = 2, r = 3, and s = 4, we obtain 

2/3aA2 a aA2 = 2/3aA I a aA3 . 
a(J + at/J at/J + a(J 

(2.25) 

Finally, differentiating (2.19) with respect to t/Ja,be and 
choosing a = b = 4, c = i = 3, r = 1, and s = 2, we have 

2a aA I + {3 aA2 = 2a aA2 + {3 aA3 . 
at/J at/J a(J a(J 

(2.26) 

From (2.25) and (2.26) it follows that 

aA2 aA I aA2 aA3 (2.27) 
a(J = at/J' 

-=-. 
at/J a(J 

Now, (2.24) and (2.27) are the integrability conditions we 
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need to establish the existence of a scalar T = T(t/J,t/!) such 
that 

(2.28) 

In this case, a straightforward computation proves that 

(2.29) 

where L =,[gT is a gauge-invariant scalar density. This 
solves the equivariant inverse problem since det (Fii ) ¥- 0 is a 
dense subset of the space of variables gii ,Fii [and then (2.29) 
is valid everywhere by a continuity argument]. 

III. THE MAXWELL EQUATIONS 

We have proved in Sec. II that if B I is of the type (1.7) 
and it satisfies (1.8), then 

B I LiJ = 'Ii' (3.1 ) 

whereL ii = aLlaFii andL = ,[gT(t/J,t/!) , witht/Jand t/!given 
by (2.18). By similarity, with the Maxwell equations (1.1) 
and (1.2), we could claim the field equations to be 

L ii JI Ii = , (3.2) 

*LiilJ =0. (3.3) 

Now, Eqs. (3.3) corresponding to the Maxwell internal 
equations do not depend on the charge and current distribu
tion, and so they should be satisfied identically. Written out 
in full, they are 

*L ii . = I-g [16 a
2
L *FhkFiiF . + 16 a

2
L FhkFIJF 

IJ vS at/J2 hk IJ at/J at/! hk Ii 

817 

+ 8 ~: FlJli + 4 a
2
L *Fhk *FIJFhkli 

U'f' at/!at/J 

+ 4 a2L *FlJphkF ] - 0 
a~ hkli - . (3.4) 

Differentiating (3.4) with respect to t/!a,be' we obtain 
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4 a
2
L (*FabF k + *F~Flb) + 4 a

2
L (FabFle + F~Flb) 

at/J2 at/J Of/! 

+ a
2
L (*Fab *Fle + *Fae *F lb ) 

at/! at/J 

+ a
2
L (Fab*Fle+Fae*Flb) 

a~ 

+ aL (2i"gbc - glbr - gc~b) = O. (3.5) 
at/J 

In the coordinate system in which (2.20) is valid and 
choosing a = b = 1, c = i = 3, we have aL lat/J = 0 if we as
sume det(FIJ ) ¥-O. Choosing now a = i = 1, b = c = 2, it 
follows that a 2 L I a~ = O. By a continuity argument we de
duce that everywhere, 

L=,[g(Ct/l+A), (3.6) 

where A and C are real numbers, and so 

L iili = C ,[gFlJli ' 

which makes (3.2) the usual Maxwell equations. 
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Operation-valued stochastic processes give a formalization of the concept of continuous (in 
time) measurements in quantum mechanics. In this article, a first stage M of a measuring 
apparatus coupled to the system S is explicitly introduced, and continuous measurement of 
some observables of M is considered (one can speak of an indirect continuous measurement on 
S). When the degrees of freedom of the measuring apparatus M are eliminated and the weak 
coupling limit is taken, it is shown that an operation-valued stochastic process describing a 
direct continuous observation of the system S is obtained. 

I. INTRODUCTION 

In the framework of the operational approach to quan
tum mechanics,I-3 a formalism for treating continuous (in 
time) measurements has been developed4-S and some appli
cations worked out.9-11 This formalism allows us to describe 
a situation in which one or more observables are measured 
with continuity in a certain time interval. These continuous 
measurements can be realized by means of a set of operation
valued measures (for this terminology see, for instance, 
Refs. 1-3) satisfying a certain composition law which is a 
kind of Markov property. We have called this set of mea
sures an operation-valued stochastic process (OVSP).4 

In quantum mechanics there are two ways for describ
ing measurements. A first one is to consider the system of 
interest alone and to describe measurements on it in an ab
stract way by means of the so-called operations; this situa
tion can be called a direct measurement. A second, more 
concrete way for describing measurements is to consider ex
plicitly a first stage of the measuring apparatus, interacting 
with the system of interest; from a measurement on this ap
paratus one can gain information on the system itself. This 
situation can be called an indirect measurement. These two 
descriptions are essentially equivalent in the sense that, if in 
the case of indirect measurement one eliminates the degrees 
of freedom of the apparatus by taking the partial trace over 
the Hilbert space of the apparatus, then one recovers a direct 
measurement, described by operations.3,12 A similar consis
tency property does not hold in the usual formulation of 
quantum mechanics (in which observables are represented 
by self-adjoint operators and state changes are described by 
von Neumann reduction postulate). This is one of the rea
sons for generalizing quantum mechanics. 

In the case of continuous measurements we have a simi
lar consistency problem. Consider explicitly a first stage of 
the measuring apparatus, coupled to the system of interest, 
and make a continuous measurement of some observable of 
the apparatus. From this indirect continuous measurement 
we can obtain information about the behavior of the system. 
Then, we can eliminate the degrees offreedom of the appara
tus and in this way we obtain some kind of direct measure
ment as in the general case. However, in general, we do not 
obtain an OVSP because the Markov property does no long
er hold for the reduced system. Therefore to include in the 

description more and more pieces of the measuring appara
tus brings us to different results and the question arises of 
where to cut this chain. The problem is to find suitable con
ditions under which the Markov property is (approximate
ly) recovered also for the reduced description. Then to in
clude or not to include a stage of the measuring apparatus for 
which such conditions hold gives essentially the same results 
and, therefore, it is at this stage that the cut can be consis
tently taken. 

Now, "Markovian" limits for a reduced quantum dy
namics are extensively studied in the literature. 13-21 Since in 
our theory of continuous observations measurements and 
dynamics are strictly linked, we expect that, under these lim
its, also the Markov property characterizing the OVSP's will 
be preserved. Indeed, we shall show that, under a suitable 
weak coupling limit, the Markov property for a reduced 
OVSP is recov~red. Therefore, when this limit gives a good 
approximation, one can consistently ignore the details of the 
measuring apparatus and take into account only the system. 

In this paper we do not try to attain full mathematical 
rigor. This is because too many technical details could ob
scure the main physical ideas, but, above all, because the 
results of this paper open more general mathematical prob
lems. In Sec. VI we shall discuss how the topics treated here 
deserve a more general mathematical frame. Only in this 
more general perspective, mathematical rigor becomes es
sential. 

The plan of the paper is as follows: after a short review of 
the continuous measurement formalism (Sec. II), we con
sider a quantum system coupled to an apparatus undergoing 
continuous measurement and eliminate the degrees of free
dom of the apparatus (Sec. III); then, we take the weak 
coupling limit, in the form introduced in Ref. 18 (Sec. IV) 
and show that in this wayan OVSP is reobtained (Sec. V). 
Some open problems are pointed out in the conclusions (Sec. 
VI). 

II. OPERATION-VALUED STOCHASTIC PROCESSES 

This section is devoted to a sketch of the formalism of 
continuous measurements. We limit ourselves to some defi
nitions and general results; the physical justifications of the 
concepts introduced below can be found in the literature 
quoted. 

Let D be the nuclear space of the n-component, real COO 
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functions on R with compact support and D ' its topological 
dual space. We denote by Xk the distribution x (xeD') ap
plied to the test function k (keD). We equip D' with the 
family of u algebras {I(t"t,), t\ < t2, t l,t2eR}, where I(t"t,) is 
the u algebra generated by the sets (cylinder sets) of the 
form {xeD': (Xk" ... ,xk,)eB} (BaBorelsubsetofRS

) with 
the condition that the supports of the test functions k' are 
contained in the time interval (t1,t2). This is the framework 
of classical generalized stochastic processes (GSp'S).22 The 
elements of D ' play the role of random variables. 

Let now A be the Hilbert space of the system and T(A) 
the space oftrace-class operators on A. We call (time-trans
lation invariant) OVSP a family 

{Y(t2,tl;N), NE'.I.(t"t,l' tl <t2, tHt2ER} 

oflinear maps from T(A) into itself with the following prop
erties. 

(i) Y(t2,t l;N) is completely3 positive. 
(ii) Y (t2,t I;') is strongly u additive on '.I.(t"t2) . 
(iii) Y(t2,tl;D') is trace preserving (normalization). 
(iv) The following composition law holds: 

Y(t3,t2;M)Y(t2,tl;N) = Y(t3,t l;NnM) , 

'tI NE'.I.(t"t,) , 'tIME'.I.(t2.t,l' tl < t2 < t3 . (2.1) 

(v) The time-translation invariance holds, i.e., 

Y(t2,tl;N) = Y(t2 + I,tl + I;N;), 'titeR, 'tINe'.I.(t"t,), 
(2.2) 

where NtE'.I.(t, + t,t, +;) is obtained from Nby the time trans
lation in D " defined by duality from the time shift in D 

t 

k--+ k" k,(t) = k(t - f) . (2.3) 

When the system is prepared in the state Wat time t I> 

probabilities are given (for NE'.I.(t"t,) ) by 

P(N, w,tl ): = Tr{Y(t2,tl;N) W}. (2.4) 

Thetriple{D', '.I.(t"t,) ,peel W,tl)}forgiven W, tl,t2, is a GSP 
in the sense of Gel'fand.22 Equation (2.1) is the Markov 
property mentioned in the Introduction. 

In the theory of GSP's it is useful to introduce the notion 
of characteristic functional (the functional Fourier trans
form of the probability measure),22 Analogously, for the 
OVSP's it is useful to introduce the notion of characteristic 
operator,4,6 defined by 

~ (t2,t l;[k]): = r i XkY(t2,t l;dx), (2.5) 
JD' 

where k(t) is a test function with support contained in 
(t1,t2). The quantity 

L( [k], W,to): = Tr{~ (/,to;[k]) W} (2.6) 

gives the characteristic functional of the associated GSP [in 
(to,f)]; from Eq, (2.6) all the probabilities and, so, all the 
physically interesting quantities can be computed (see Ref. 
4). Moreover, given the characteristic operator ~ ( ... ), it is 
possible to reconstruct the OVSP Y ( ... ). 

In Ref. 8 we have shown that a family 

{~(t2,tl; [k]), keD, supp(k) C (t1,t2), tl < t2, t l,t2eR} 

of bounded operators acting on T(A) is the characteristic 
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operator of an OVSP if and only if the following properties 
hold. 

(a) ~ (t2,t I; [0] ) is trace preserving (normalization), 
(b) ~ (t2,t l;[k]) is strongly continuous in k. 
(c) ~ ( ... ). is completely positive definite, which 

means that the map of T(A) into itself 
m 

L aT ~ (t2,t l; [k,. - kj ] )aj 
ij= I 

is completely positive for any choice of the integer m, of the 
complex numbers a i and of the test functions k i . 

for 

(d) The following composition law holds: 

~ (t3,t2; [k2]) ~ (t2,t l; [kd) = ~ (t3,t l; [kl + k2 J) , 

(2.7) 

supp(kl ) C (t1,t2), supp(k2 ) C (t2,t3 ), tl < t2 < t3 . 

(e) Time-translation invariance holds, i.e., 

~ (t2,t l;[kJ) = ~ (t2 + I,tl + I;[k, p, 'tilER. (2.8) 

Now, we want to construct a simple class of OVSP's. 
Consider a family of operators acting on T(A) defined by the 
differential equation (derivatives are taken in the strong 
sense) 

:t ~ (t,to;[kJ) = %(k(t»)~ (t,to;[k]), keD, 

with the initial condition 

~ (to, to; [k]) = 1 , 

(2.9) 

(2.10) 

where, for any kERn, %(k) is a suitable operator, densely 
defined in T(A); we call it the generator of ~ ("'). Then, 
properties (d) and (e) are satisfied and one can give suffi
cient conditions on % in order that also properties (a), (b), 
(c) hold.23 However, it is difficult to find out the explicit 
form of the most general generator satisfying these condi
tions. 

Note that the family of operators {~(t), t>O}, where 

~ (t - to): = ~ (t,to;[O]) :=Y(t,to;D') , (2.11) 

turns out to be a quantum dynamical semigroup.13-19 Its 
meaning is to give the dynamics ofthe system, including the 
perturbation due to the measuring apparatus.4 The operator 
%(0) is the generator ofthis semigroup. Only in the case of 
uniform continuity is the most general form of %(0) 
known.24 

In Ref. 7, by computations involving quantum stochas
tic calculus,25 a form for % (k) has been found, which is not 
the most general one, but which allows us to construct a 
physically interesting class of OVSP's. The structure of the 
generator % (k) given in Ref. 7 can be written in the follow
ingway: 

• n 1 n 

%(k) =!f + I L k/~j -- L kirijkj + %p(k) , 
j=1 4 ij=1 

rijER, (2.12) 

%p(k)X= f (SJXSj exp(ik-uj ) -~{SjSJ,x}), 
j=1 2 

(2.13 ) 
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- ! r.~ I En [Q,,{Q.,x}] , Drs,ErsER , 

m 

Rj = L C;.Q. + cjI, j = 1,2, ... ,n, C; .. CjEC, 
.=1 

(2.14 ) 

(2.15 ) 

(2.16) 

where [A,B] denotes the commutator and {A,B} the anti
commutator, H, Q., and ~ are operators in A, Ht = H, Q! 
= Qs,l is the identity operator on A, and {I, Q .. s = 1, ... ,m} 

is a set of linearly independent operators. In Eqs. (2.12)
(2.16) three real matrices (r,D,E) and a complex one (C) 
are involved; r has dimensions n X n, D and E have m X m, 
and C has n X m. Moreover, in order that property (c) of the 
characteristic operator holds,4 we must have 

r;; .. o, det r~o, 

Drs = D.r , Ers = - E.r , D + iE>O, 

(2.17) 

(2.18 ) 

(2.19) 

The operators involved in Eqs. (2.13)-(2.16) can be 
bounded or unbounded. Reference 7 deals with the case of 
bounded operators. Some rigorous results in the case of un
bounded operators are given in Ref. 5, where Feynman inte
gral techniques are used, and in Refs. 9 and 11, where linear 
systems are treated. 

In Eq. (2.12) we have written the generator as the sum 
of a "Gaussian" (the first three terms) and a "Poissonian" 
part [% p (k) ]. These names are due to analogies with the 
classical case. From a physical point of view a pure Gaussian 
OVSP is particularly suited for describing a continuous mea
surement of quantities like position and momentum of a par
ticle9-" and a pure Poissonian OVSP for describing count
ing processes. 2,7 

The moments of the measured quantities can be ob
tained, when they exist, by functional differentiation of the 
characteristic functional (2.6) (Ref. 4). In the following we 
shall need the expressions for mean values and two-time cor
relation functions in the case of a pure Gaussian OVSP 
(~=O, Vj). For the mean values (taking t = ° as initial 
time) we have 

n f+oo 
= ;~I Jo dt k; (t) (x; (t» , 

where 

820 

(x;(t» = -i-8
-L([kl!W,0)!k=o 

8k;(t) 

= Tr{!(R; + R J) [1 (t) W} ; 
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(2.20) 

(2.21) 

similarly, for the two-time correlation functions we obtain 

«(x; (tl) - (x; (tl» )(Xj (t2) - (xj (t2») 

=! rij8(t, - t2 ) +! (}(tl - t2 ) 

XTr(R; +RJ)[1(tI-t2)~j[1(t2)W) 

+! (}(t2 - t l ) Tr(Rj + R J) [1 (t2 - tl)~;[1 (tl) W) 

- (x; (tl» (x/t2» = :aij(tl,t2 ) = aj;(t2,tl) ' 
(2.22) 

where () (t) is the usual step function. Note that, as the corre
lations come from a true probability measure, aij (t1,t2) is 
positive definite, i.e., for any choice of the complex functions 
kj (t), we have 

;Jt,i+ oo 

dt,dtzkr(t,)aij(t"t2)kj(t2»0. (2.23) 

III. A SYSTEM COUPLED TO A CONTINUOUSLY 
OBSERVED MEASURING APPARATUS 

Consider now a system S, in which we are interested 
(with Hilbert space As ), coupled to a continuously observed 
system M (with Hilbert space AM)' We call M the measur
ing apparatus; in reality we can include in M, in addition to 
(a first stage of) the apparatus itself, also other things as 
thermal reservoirs and so on. 

Let .Y s be the generator of a quantum dynamical semi
group on T(As), giving the dynamics of Sby itself. In gen
eral this dynamics can be dissipative or purely Hamiltonian. 
The system S interacts with M via a purely Hamiltonian 
coupling .Y 1> which we write as 

.Y1W= - (i/Ii) [HI'W] , (3.1a) 
N 

HI = L Aq ®Bq , (3.1b) 
q=1 

where lAs' Aq , q = 1, ... ,N, are linearly independent self-ad
joint operators in As and Bq , q = 1, ... ,N, self-adjoint opera
tors in AM' System M undergoes a continuous measurement, 
which we assume, for simplicity, to be of pure Gaussian type. 
In the last section we shall discuss what happens when also a 
Poissonian type of measurement is considered. Therefore the 
continuous measurement on M (and its dynamics) is de
scribed by equations of the type ofEqs. (2.9)-(2.19) (with 
%p=O). 

Summarizing, the continuous observation (and the dy
namics of S + M) is described by an OVSP on TeAs ® AM)' 
whose characteristic operator satisfies the equations 

~ rJ (t,to;[4»]) = %(4)>(t))rJ (t,to;[4»]) , 
at 

rJ (to, to; [ 4»]) = 1 . 

The generator % (4)>) is given by 

%(4)>) = .YS®/"M +/"s®.Y M +.YI 
n n 

(3.2a) 

(3.2b) 

+ i L ,pj/"s ®~j -! L ,p;rij,pj' (3.3) 
j= I ;J= I 

where (1) /" sand /" M are the identity operators on T(As ) 
and TeAM)' respectively; (2) .Y M is the generator of a 
quantum dynamical semigroup on T(AM) with the struc-
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turegivenbyEqs. (2.14) and (2.18); (3) &ij is an operator 
in T(.4.M ) given by 

&ijX= ~ (RjX +XRJ) (3.4) 

[R j is an operator in .4. M with structure (2.16) ] ; and ( 4) r is 
an invertible positive real n X n matrix [see Eq. (2.17)] and 
r, C,D,EsatisfyEq. (2.19). 

We assume that the dynamical semigroup exp(2' Mt) 
admits a stationary state PM , i.e., 

2' MPM = 0, PMET(.4.M), PM >0, TrM{PM} = 1 , 

(3.5) 

and,moreover, that 

TrM{RjPM} = 0, j = 1, ... ,n, 

TrM{BqPM} = 0, q = 1, ... ,N. 

(3.6) 

(3.7) 

Equations (3.6) and (3.7) are not restrictions. IfEq. (3.6) 
does not hold, we can make the replacement Rj -R; 
= Rj - TrM{RjPM}; this amounts to shifting the stochas

tic variables by a constant. If Eq. (3.7) does not hold, with
out changing %(¢), we can make the replacements 

Bq -B ~ = Bq - TrM{BqPM} 

and 

2's-2'~ = 2's -.!.... [f (TrM{BqPM})Aq,.]. 
Ii q= 1 

Let us prepare at time to the measuring apparatus in the 
stationary statepM (not correlated with the state of system 
S), so that at time to we have the initial state 

Then, we introduce the projection operators &';, i = 0,1, on 
T(.4.s ®.4.M ) defined by 

(3.9a) 

and 

(3.9b) 

Note that the initial state (3.8) satisfies the equation 

(3.10) 

Because we are interested only in the trace of g ( ... ) 
applied to W [cf. Eq. (2.6) and the following comments], 
we can first eliminate the degrees of freedom of the measur
ing apparatus by taking the partial trace over .4. M and then 
we can take the trace over .4.s . Let us define for any operator 
d acting on T(.4.s ®.4. M ), 

(3.11 ) 

Taking into account that the initial state satisfies Eq. (3.10), 
we have that all the probabilities can be obtained from the 
reduced characteristic operator g (00) ( ... ). 

Using the well-known projection operator technique, 
we derive from Eq. (3.2a) a system oftwo coupled differen
tial equations for g (00) ( ... ) and g (10) ( ••• ); by eliminat
ing g (10) ( ••• ), we obtain for g (00) ( ... ) a kind of "gener-
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alized master equation," 

~ g (00) (t,to; [ cf»] ) at 
= %(00) (cf»(t))g (00) (t,to;[cf»]) 

+ f dt' %(ot)(cf»(t»)OU(t,t';[cf»]) 

X%(Iodcf»(t'»)g (00) (t',to;[cf»]) , ( 3.12) 

where OU (t,t'; [cf»] ) is the solution of the differential equation 

~ OU(t,t';[cf»]) = %(11) (cf»(t»)OU (t,t';[cf»]) , (3.13a) at 
with the initial condition 

OU (t , ,t '; [cf»] ) = 1 . (3.13b) 

Now, Eq. (3.12) does not imply Eq. (2.7) for 
g (00) ( ... ) and, therefore, the reduced characteristic opera
tor does not give rise to an OVSP for system S alone: in the 
general case the structure of the measuring apparatus and 
the details of the interaction between S and M have an essen
tial role and M cannot be eliminated in an effective way. As 
we shall see in the following section, Eq. (3.12) reduces, 
under a suitable limit, to a Markovian master equation and, 
so, Eq. (2.7) holds. Only in this case we obtain a reduced 
OVSP for system S itself. 

By Eqs. (3.5)-(3.7) we have 

(2's ®/ M)&'; = &,;(2's ®/ M)' 

(/s ® 2' M)&'; = &';(/s (!) 2' M)' 

(/ s ® 2' M ) &' 0 = ° , 
(/s ® &ij )(00) = 0, 2'/(00) = 0; 

(3.14a) 

(3.14b) 

(3.14c) 

therefore the components of the generator % (cf») are given 
by 

%(01) (cf») = &' 0(2'1 + i jtt ¢j (/s ®&ij ») , 

%(10) (cf») = (2'1 + i jtl ¢j(/s ®&ij »)&' 0' 

n 

+ i L ¢j(/s ® &ij )(II) 
j=1 

(3.15b) 

(3.15c) 

(3.15d) 

Finally, let us rewrite Eq. (3.12) in the equivalent inte
gral form (that will be useful in the following) : 
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g (00) (t,to; [«I>]) - 9'0 

= i' dt' J: dt" exp{(t - t").2" s ® ,I'M -!.± J: dtl tPi(tl)r ijtPj(tI)} 9'0(.2"1 + i.i tPj(t ")/s ®flij) 
'0 , 41J=1 , )=1 

xT {exp r" dt2(/S ®.2" M +.2" s ®/ M + .2"/(11) + ijtl tP/ t2)(/S ®flij )(II»)} 

X( .2" 1 + i jtl tPj (t ')/s ® flij)9' 0 g (00) (t ',to;[ «1>]) , 

where T means the chronologically ordered product and we 
have used expressions (3.15). 

IV. THE WEAK COUPLING LIMIT 

In this section we want to see whether, under a suitable 
limit, Eq. (3.12) reduces to a Markovian equation of the type 
(2.9), so that a true OVSP is recovered for system Salone. 

Note that g (t,to; [0] ) gives the dynamics of the total sys
tem S + M and g (00) (t,to; [0]) the reduced dynamics of S 
alone [cf. Eq. (2.11)]. Therefore our first problem is to find a 
limiting situation in which g (00) (t,to; [0] ) becomes a Marko
vian dynamics. 

Consider the case of weak coupling between S and M. We 
know that the usual second-order perturbation theory applied 
to a reduced dynamics [as that given by Eq. (3.16) for 
«I>(t) = 0] in general does not preserve positivity and, so, does 
not give rise to a bona fide limiting dynamics (see, for instance, 
Ref. 19). Only if a scaling parameter A is introduced and the 
limit ,1->0 taken, complete positivity is preserved. A scaling 
procedure is needed also in our case in order that the positivity 
property (c) of Sec. II remains valid and a true reduced OVSP 
is obtained in the limit. 

Two schemes for the weak coupling limit are known and 
both can be adapted to our case: that of Davies13 and that of 
Palmer. IS The first one treats the free motion of Son the order 
one and the dissipation on the order A 2; in this case the exis
tence of the limit ,1->0 needs very restrictive hypotheses on 
.2"s{.2"s = - (i/Ii) [Hs,·],Hs with only discrete spectrum). 
The second one uses a different scaling for which the free mo
tion of S and the dissipation are of the same order of magnitude; 
no special hypothesis on .2" s is necessary and more general 
forms for the limiting dynamics are obtained (as in the case of 
the singular coupling limie4-16). For these reasons we choose 
the second type of scaling, which is characterized by 

.2"1 ->,1.2"1 , 

.2" s ->,1 2.2" s , 

r=A~. 

(3.16) 

(4.1 ) 

(4.2) 

(4.3) 

The introduction of a rescaled time l' is necessary for compen
sating the vanishing of the coupling (4.1). 

In our case, in which also measurements are considered, 
we have to rescale also the continuously measured quantities, 
otherwise in the limit ,1->0 all information on S is lost. If we 
denote by x(t) the old stochastic variables associated with the 
test functions «I>(t), we have to introduce new stochastic vari
ables z( 1') and test functions k( 1') in such a way that 

f drz(r)·k(r) = f dtx(t)·«I>(t) . (4.4) 

Therefore we must take 

z(r) =A a- l x(r/A 2), 

k(r) =,1 -(a+ 1)«1>(1'/,1 2) , 

where a is a real scaling exponent to be determined. 

(4.5a) 

(4.5b) 

If we introduce Eqs. (4.1)-(4.3) and (4.5b) into Eq. 
(3.16) and set 

G ~;}6) (1',1'0; [kf): = g ~;}6) (r/A 2,1'01,1 2; [A a + Ik(A 2t)]), 
(4.6) 

after some simple calculations we obtain 

G ~;}6) (1',1'0; [k]) - 9'0 

= i~ dr' exp { (.2" s ® /M)( l' - 1") 

_ A
2a ± [dr" ki(r")rijkj(r")} 
4 iJ= I T' 

i
(T-T)/A 2 

X 0 du SIAl (u;r'; [k])G ~;}6) (1",1'0; [k]) , 

(4.7) 

where 

..#'(A) (u;r';[k]) = 9'0(.2"/(,1 2U) + iA a jtl kj(r' +,1 2U) (/s ®flij ») 

X T {exp iU 

dU'(/s ®.2" M +,1.2"1(11) (A 2U') + iA a+ t jtl kj(r' +,1 2U')(/S ®fli)(lI))} 

X (.2"1 +iAajtt kj (r')(/s®flij »)9'o (4.8) 

and 

(4.9) 

From these equations it is apparent that, if we want the limit ,1->0 to exist and the continuous measurement on M to give 
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information about S, we must take 

a=O. (4.10) 

Consider now the formal expansion ofthe operator ff(A) ( ... ), 

ff(A) (u;T';[k]) = ,9'J o[ 2'1 (A 2U) + i jtl kj ( T' + A 2U)/S ® ~j ] 

x [2'/(11) (A 2UI ) + i jtl kj(T' + A 2UI )(/S ®~j )(11) ] x··· 

xe(/S .. 2'M)(Ur
-

1 - u
r

) [2'/(11) (A 2Ur ) + i jtl kj (T' + A 2ur )(/ S ® ~j )(11) ]e(/s"2' M)Ur } 

X [ 2'1 + i jtl kj (T') / S ® ~j ],9'J 0 • (4.11) 

If one takes into account the explicit expressions for 2' I' ~j' ,9'J;, one sees that in the integrals they appear some kind of 
multitime correlation functions of M, which can be written as 

TrM{'11 j , exp[ 2' Mud ~j2 exp[ 2' MU2]·· .'11j, exp[ 2' MUs ]PM}' 

where '11 j : = [Bj ,·], forj = 1, ... ,N, '11 j : = {Bj _ N,·} forj=l=N + 1, ... ,2N, ~j: = ~j-2N' forj = 2N + 1, ... ,2N + n. If these 
quantities decay "sufficiently fast" in time, all the terms but the first in ff(A) vanish for A - 0 (see Ref. 16 for more precise sta
tements in a similar situation). In this case we obtain the Markovian master equation (in integral form) 

G ~~)o) (T,To; [k]) - ,9'J 0 

= EdT' exp{(2's ®/ M)(T - T') - ~.± EdT" k;(T")rijkj(T")}i+ 00 du ,9'J 0[2'1 + i .± kj(r)/s ®~j] 
To 4 'J = I -r' 0 J = I 

xe(/s"2'M)U [ 2'1 + i jtl kj (T')/s ® ~j ],9'J oG ~~)o)( T',To; [k]) . (4.12) 

Finally, if we set 

fromEq. (4.12) we have (changing Tin t) that the reduced 
characteristic operator satisfies the differential equation 

a 
- [1 (t,to; [k]) = %(k(t»)[1 (t,to; [k]) , at (4.14) 

with the initial condition 

( 4.15) 

the generator % (k) is given by 

823 

+ l+ 00 du TrM{[ 2'1 + i jtl kj / s ®~j] 

X//
S
"2'M)U[ 2'1 + i;tlk;/s ®~; ]p®PM} . 

(4.16) 
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V. THE STRUCTURE OF THE REDUCED 
CHARACTERISTIC OPERATOR 

(4.13) 

In this section we want to prove that the generator 
(4.16) has the structure (2.12)-(2.19) with %p =0, i.e., it 
is of pure Gaussian type. 

In order to write down the explicit expression of % (k) 
in a compact form, let us introduce some more definitions. 
First, for any operator f!lJ acting on T(hM ), we define its 
transpose f!lJ T acting on B (h M) (Banach space of bounded 
operators on h M ) by 

TrM [(f!lJ TY)X] = TrM [Y(f!lJX)] , 

'dXET(hM ), 'dYEB(hM ). (5.1) 

Then, we introduce the pre-inner product in B(h M ) 

(A,B):=TrM(AtBpM). (5.2) 

The completion of B(hM ) with respect to this inner product 
is a Hilbert space, denoted by L 2 (h M;P M) (see Ref. 26, pp. 
81-87, and Ref. 17, p. 165). InL 2(hM;PM) we define a time
translation operator by 

Y(t):=exp(2'Lt), t;>O. (5.3) 
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It can be shown that !T (t) is a contraction and, therefore, it 
can be extended to the whole L 2(hM;PM); then, {!T(t), 
t>O} is a strongly continuous contraction semigroup on 
L 2(hM;PM) (Ref. 17, pp. 165-166). For negative times we 
define 

(5.4) 

where the star denotes the adjoint with respect to the inner 
product (5.2). Note that we have 

«A,!T(t)B»* = (B,!T( - t)A), 'v'teR. (5.5) 

Recalling Eqs. (3.1), (3.4), (3.9) and using the above 
definitions, we can write the generator % (k) of the limiting 
characteristic operator Y ( ... ) [see Eqs. (4.14)-(4.16)] in 
the following way: 

where 

1 ~ k r(S)k -- 4.. ; ij JP, 
4 ;J= 1 

. N 

-~ L E~)[Aq,{Ap,p}], 
4 q,p=1 

(5.6) 

(5.7) 

HI=_i f ((+co dt-[ dt) 
41i q,p= 1 Jo - 00 

X (Bq,!T(t)Bp)AqAp + H.c. , (5.8) 

D~) = ~ f-+ CO

OO 

dt «Bp,!T(t)Bq) + (Bq,!T(t)Bp» , 

(5.9a) 

E~) = ~ f_+: dt «Bp,!T(t)Bq) - (Bq,!T(t)Bp» , 

(5.9b) 

c j~S) = -..!.... {f + co dt (Rj,!T(t)Bq) 
Ii - co 

+ [co dt ( (R J,!T(t)Bq) + (Bq,!T(t)Rj » } , 

(5.10) 

r~S) = r ij + ~ f + co dt «R;,!T(t)Rj ) + (Rj,!T(t)R;» 
2 -co 

1 i+ 00 +- dt(R;o!T(t)RJ) + (Rj,!T(t)Ri») 
2 0 

+~[ dt «RJ,!T(t)R;) + (R;,!T(t)Rj ». 
2 -co 

(5.11 ) 

Note that the operator Y ( ... ) satisfies Eqs. (2.9), 
(2.10) and its generator equations (2.12) (with %p =0), 
(2.15), and (2.16). In order that Y ( ... ) be the characteris
tic operator of a true OVSP, we must also prove that r(S) is 
an invertible positive real n X n matrix, .!f is the generator of 
a quantum dynamical semigroup and 

( 5.12) 

In writing Eq. (5.12) we have not taken into account the 
contribution of the (possible) dissipative part of .!f s, be
cause Y ( ... ) is a characteristic operator for any choice of 
.!f S and in particular when one has a purely Hamiltonian 
generator .!f S = - (i/Ii)[Hs,']' 

From definitions (5.9a), (5.9b), and (5.11) and from 
Eq. (5.5), we see immediately that we have 

r(S) = r~.s)ElR D (S) = D (S)eR E (S) = - E (S)eR 
IJ JI , qp pq' qp pq' 

(S.13) 

Then, consider the correlation functions (2.22) for the 
continuous observation on system M, when .!f I =0 and 
W=PM [so that we have Y (t) = exp(.!f Mt), 
exp(.!fMt)PM =PM' (xj(t» =0]. We obtain 

l1ij(tl,t2) = ~ rij8(t1 - t2) +! O(tl - t2) {(R T,!T(t2 - tl)Rj ) 

+ (Rj,Y(t1 - t2)R;) + (R;o!T(t2 - tl)R) + (Rj,!T(t1 - t2)R Tn 
+! 0(t2 - t l ) {(R J,!T(t1 - t2)R;) + (R;,!T(t2 - tl)Rj ) 

+ (Rj,!T(t1 - t2)R;) + (R/>!T(t2 - tl)R J)}. 

By taking in Eq. (2.23) 

we have 

824 

0< i crCj{~ rij + ~f+ 00 dte- a1tl [(R;oY(t)R) + (Rj,Y(t)R;)] 
;J=I 2 4- co 

+~ (+co dte- at [(Rj,Y(t)Rr> + (Rj,Y(t)RJ)] 
4 Jo 

+~[ dte- a1tl [(Rj,Y(t)Rj ) + (RJ,Y(t)R;)]}; 
4 -co 
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(5.14) 

(5.15 ) 

(5.16) 
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and taking the limit a ..... 0 + , we obtain 

r(S»o. (5.17) 

Equation (5.12), as it stands, requires an invertible 
r(S) , but, if it is not so, we can easily modify this equation in 
order to take into account this fact. For simplicity, we do not 
treat this case here and assume that r(S) is invertible. 

Now we have only to prove the positivity property (c) 
of Sec. II. But the quantity 

m 

L araj Y (T2,T1; [ki - kj ] ) 

ij=l 
M 

= L araj lim TrM ( ~(A)(T21A. 2,Tl/A. 2; 
ij= 1 A_O 

[A. (ki(A. 2t) - kj(A. 2t»)] (.) ®PM» (5.18 ) 

is completely positive, because complete positivity is not de
stroyed under any limiting procedure. 17.24 In particular, by 
taking k i = 0, we obtain that .!f is the generator of a quan
tum dynamical semigroup and this is true, for any choice of 
.!f s, if and only if 

D(S)+iE(S»O. (5.19) 

Finally, from the complete positivity of (5.19), for k i #0, 
have also that Eq. (5.12) holds [in Ref. 4 we have proved 
that Eq. (2.19) is a necessary condition for the positivity of 
an OVSP with a generator of pure Gaussian structure]. 

It would be interesting to have independent direct 
proofsofEqs. (5.12) and (5.19). However, I am able to give 
this proof only for Eq. (5.19). A very formal proof of this 
equation goes as follows. Since {Y(t), t>O} is a strongly 
continuous contraction semigroup on a Hilbert space, ex
tended to negative times by Eq. (5.4), we can write 

Yet) = exp{ - i.#t - fJJ It I} , (5.20) 

with 

.# = .#*, fJJ = fJJ*>O. 

Then we have 

D(S) + iE (S)=..l J+ 00 dt(B Y(t)B) 
qp qp - ff - 00 q, P 

= (Uff) « - i.# + fJJ) -I Bq , 

fJJ ( - i.# + fJJ) -IBp) ; 

(5.21 ) 

(5.22) 

from the positivity of fJJ , Eq. (5.19) follows. More rigorous
ly, Eq. (5.19) is a direct consequence of Theorem 3.8 of Ref. 
27. 

VI. FINAL REMARKS 

As we have seen, if we consider a continuous measure
ment on M, of pure Gaussian type, the reduced OVSP gives, 
in the weak coupling limit, a continuous measurement on S 
of Gaussian type. The same result holds even for more gen
eral OVSP's. Consider a continuous measurement on M of 
the type discussed in Sec. II, with a generator with nonvan
ishing Poisson part. On eliminating the degrees offreedom of 
M and under the scaling discussed in Sec. IV, it could be 
shown that also in this case a pure Gaussian reduced OVSP 
is obtained. This result is not surprising· if one thinks of the 
classical analog. Let us try to explain this point. 
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If we consider the definitions of Sec. II in the classical 
case (A =C), we see that our OVSP's reduce to GSP's with 
independent values at any time.22 Among these processes 
Eq. (2.9) selects those GSP's which are the derivative of 
ordinary Markov processes with independent increments. 
As is well known, these processes are strictly related to infi
nitely divisible probability distributions. The classical Uvy
Kintchine formula gives the most general distribution of this 
type.28 An important subclass of infinitely divisible probabi
lities is that of stable distributions, which possess a domain of 
attraction.28 Under suitable sealings, the probability distri
bution of the sum ofidentically distributed quantities goes to 
one of the stable distributions. 

Also in the quantum case it is possible to give a defini
tion of infinite divisibility. In Ref. 23 the notion of infinitely 
divisible instrument is introduced, and it is shown that the 
problem of finding the most general infinitely divisible in
strument is equivalent to the problem of finding the most 
general OVSP, whose characteristic operator satisfies Eq. 
(2.9). Moreover, the scaling procedure used in the present 
paper is very reminiscent of that used in the usual central 
limit theorem (probability distributions with finite first and 
second moments are in the domain of attraction of the nor
mal distribution). Therefore it is not surprising that only 
OVSP's of Gaussian type be obtained in the limit. Let us 
stress that the limiting procedure discussed in Sec. IV is 
more complicated than the classical one, because OVSP's 
involve not only the probabilities, but also the quantum dy
namics. 

The above considerations suggest the following open 
problems in the quantum case: (1) to find some quantum 
analog of the Levy-Khintchine formula for the infinitely 
divisible instruments; (2) to give a physically motivated and 
mathematically well-posed definition of stable instrument 
and to find the most general one; (3) to introduce the notion 
of domain of attraction for stable instruments; and (4) to 
formulate suitable central limit theorems in the quantum 
case, in such a way that the results of this paper could be 
regarded as a particular case of these theorems. None of 
these problems is trivial. Only in the case of point (1) some 
partial results are known.8.23 
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The bound state eigenfunctions ofthe Rosen-Morse [N. Rosen and P. M. Morse, Phys. Rev. 
42,210 (1932)] potential are investigated using ladder operators that give a representation of 
the algebra A I' The representations are generally infinite-dimensional and indecomposable, the 
representation space containing unbounded functions as well as the normalizable 
eigenfun~~ions. Operators ~ving eigenfunctions of a potential with different strength are also 
found, glvmg a representatIon of D2• The A I (or su2) representations are identified in terms of 
a classification proposed by Sannikov (S. S. Sannikov, Yad. Fiz. 6, 1294 (1967) [Sov. J. Nucl. 
Ph!s. 6, 939 (1968)]), and the connection with representations obtained by Gruber and 
~hmyk [B. Grub~r and A. U: Klimyk, J. Math Phys. 19, 2009 (1978); 25, 755 (1984)] is 
given. The evaluation of matnx elements is considered. 

I. INTRODUCTION 

In the early years of quantum mechanics several exam
ples of the SchrOdinger equation, including the Rosen
Morsel potential - c sech2 x, were solved using known 
properties of special functions. The harmonic oscillator 
problem and the hydrogen atom problem2 were also solved 
by algebraic methods (matrix mechanics) which were 
equivalent to determining the properties of a representation 
of a Lie algebra associated with the system. More recently, 
relevant algebras have been discovered for several other 
cases where the Schrooinger equation is analytically soluble, 
allowing unsuspected algebraic treatments.3

-
1O In general 

the required eigenfunctions are a basis for a representation of 
the Lie algebra, which contains (ladder) operators which 
transform one eigenfunction into another. In some cases it is 
easiest to use a potential algebra where the operators gener
ate an eigenfunction belonging to a system with a different 
potential strength. For the Rosen-Morse potential such op
erators were given by Alhassid, Gursey, and IachelloR and 
these results have been extended by Frank and Wolflo to the 
modified Poschl-Teller potential, which contains the Ro
sen-Morse potential as a special case. 

Interest in the potential - c sech2 x is partly due to the 
fact that when the strength constant c = n2 + n, with n in
teger, the reflection coefficient is zero at all energies. 11 This 
quantum-mechanical curiosity became famous as an exactly 
soluble inverse scattering problem because the reflectionless 
potentials were the soliton solutionsl2 of the Korteweg-de 
Vries equation. The potential algebra has been usedR to relate 
the reflection coefficients of different potentials; if 
c = v( v + I), then v changes in integer steps. 

This paper considers first the algebra where the ladder 
operators generate eigenfunctions of the same poten
tial.R

•
13

,14 For c = n2 + n, these eigenfunctions are associat
ed Legendre functions l5 or spherical harmonics with a 
change of variable, so the algebra is evidently su2. The usual 
angular momentum operators can be used8 provided the ei
genfunctions are multiplied by a phase factor eim

¢> , introduc
ing a redundant variable t/J exactly as in the work of Arm
stron~ and Berrondo and Palmer.7 The operators retain 

their commutation properties when the integer n is replaced 
by an arbitrary v. 

The SU2 algebra is extended in Sec. III by considering 
not only the operators corresponding to an angular momen
tum L = rXp, but also those corresponding to p. This gives a 
new algebra based on six operators with the commutation 
relations of S03.1 or D2; the potential algebra8 can be con
structed as quadratic functions of these D2 operators. 

The main result of this paper, in Sec. IV, is the identifi
cation of the representations of the su2 algebra, by obtaining 
the functions annihilated by the ladder operators. 1f2v is not 
an integer, the ladder operators generate an infinite sequence 
of unbounded functions; the square-integrable eigenfunc
tions span only a small part of the representation space. 
When 2v is an odd integer, the infinite-dimensional repre
sentation is reducible but indecomposable. A quotient space 
may be used to get the familiar finite-dimensional represen
tation, but half of this space consists off unctions that are not 
normalizable. For integer v there are finite-dimensional rep
resentation spaces which include a zero-energy wave func
tion which is not normalizable; however, it is bounded, and 
adjoint operators may be defined by using an inner product 
integral with the weight function sech2 x, as discussed in Sec. 
V. Infinite-dimensional, indecomposable representations of 
sU2 were classified and labeled by Sannikovl6; each represen
tation found here is identified with one given by Sannikov; in 
some cases they are isomorphic to those given more recently 
by Gruber and Klimyk. 17

•
18 The representations of D2 have 

not been identified 'with any given previously. 
The concluding section of the paper obtains some ma

trix elements with the aid of algebraic methods. 

II. SHIFT OPERATORS CHANGING THE ENERGY 

Consider the Schrooinger equation for a Rosen-Morsel 
potential: 

H1/I= - d
2

1/1 _ v(v+ 1)1/1= _k21/1 (v>O). (1) 
dx2 cosh2 x 

When k = v the function 

(2) 
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is a square-integrable solution which (having no zeros) rep
resents the ground state. The potential constant v( v + 1) in 
(1) is invariant under the substitution v ..... - v-I. The 
same substitution in (2) shows that 

X(x) = coshv+ 1 x (3) 

is a solution of (1) when k = v + 1. This solution is not 
square-integrable. 

The possibility of a group-theoretical approach to ( 1) is 
indicated by thel5 fact that the substitution tanh x = cos () 
gives the associated Legendre equation; conversely a solu
tion of ( 1 ), at least for integer values of v, may be obtained 
from the spherical harmonic y,: (O,t/J) after deleting the fac
tor elm~. The usual angular momentum operators become 

L - -i~ 
0- at/J' (4) 

L =e±i~(+cOShX~+ iSinhx~), 
± ax at/J 

which satisfy the commutation relations 

[ Lo,L ± ] = ± L ±' [ L + ,L _ ] = 2Lo. (5) 

The Casimir operator is 

L2= -cosh2 x _+_ (a2 a2) 
ax2 at/J2 

(6) 

and it is easy to verify that 1/J(x) satisfying (1) is equivalent 
to 

Lo,pe ± ik4> = ± k,pe ± ik4>, 

L 21/Je±ik4>=v(v+ 1)1/Je±ik4>. 

For example, for any v> 0, 

(7) 

I-v = e- iv4> sechv x and IV+ 1 = ei(V+ 1)4> coshV+ 1 x 
(8) 

are solutions of (7) corresponding to (2) and (3). 
Thus, if a solution of ( 1) is multiplied by e - ik4>, further 

solutions may be generated using the shift operators L ± . 

For example, since 

L +1 - v = 2ve - i(v- 1)4> sinh x sechv x (9) 

the function sinh x sechv x satisfies (1) when k = v-I. 
The functions in (8) give zero on applying L _. Since 
L 1/J(x)eik4> = 0 reduces to a first-order differential equa
ti:n for ,p, for a given k the functions which are annihilated 
by the shift operators are unique: 

L _Ik = 0, L +Ik = L + (elk4> sechk x) = O. (10) 

[Note: alternative equations could be obtained by inter
changing t/J with - t/J and L + with L _ , but this effectively 
only duplicates the results. One consequence of the choice of 
e±ik'" factors made in (8) is that when v is noninteger, 
square-integrable functions of x always appear with a factor 
e - ik'" with k> o. ) 

One difference from angular momentum theory is that 
in general k (in elk"') is not an integer, as v - k is an integer. 
Also functions of x generated by L ± may be unbounded; for 
example, the function obtained on the right-hand side of (9) 
is square-integrable only ifv> 1, whereas/- Vis square inte
grable for v> o. More generally, as x ..... 00, 
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L n I-V _ [..!...ex+ i4>( _ ~ + i~)]n2ve-VX-iv4> 
+ 2 ax at/J 

= rv(v - 1) ... (v - n + l)ekx +ik'" 

(k=n-v). (11) 
Since I - v is even and L + changes the parity, a factor 
( - 1)" in (11) gives the behavior as x- - 00. Thus 
L ~ I - v is square-integrable when k < 0, i.e., n < v, un
bounded if n > v when v is nonintegral, and bounded but not 
square-integrable when n = v in the integer case. This gives 
the following square-integrable eigenfunctions of (1): 

L ~I - v (n = 0,1,2, ... ; n <v) belonging to the eigenvalues 
- (v - n)2. The eigenfunctions have the same parity as n. 

Later, in Eq. (24), a normalization factor will be given. 
When v is not an integer, further (n > v) applications of 

L + generate unbounded solutions of ( 1 ). When v is an in
teger, L v+I - v is a bounded zero-energy wave function hav
ing the same parity as v. The functions L ~+ ml - v and 
L v+- "'f - v have the same parity, and are both solutions of 
(1) with k 2 = m2 (k = ± m). So (apart from the factors 
e ± im"') one function must be a multiple of the other, and the 
L ~+ "'f - v (m = 1,2, ... ,v) just give the square-integrable ei
genfunctions again, the sequence terminating as in (10). 

Example (v = 1): 
1-1 = e- i", sechx, 

L +1- 1 = 2 tanh x (zero-energy wave function), 

L 2+1- 1 = -2e'~sechx= -2/1 [cf. (10)], 

L+/I =0. 

When v is a half-integer, L ~I - v and L 2:;. -'y - v (m < v) 
are also both solutions of the same equation (1) with 
k 2 = (m - V)2, but they are opposite parity (as L z:;.- m 

= L 2:;.- 2mL ': and 2v - 2m is odd). Thus for m < v the 
L 2:;' - ml - v are the second (unbounded) solutions of ( 1). 

Example (v = !): 

1- 1/2 = e - i"'/2 sechl/2 x 

..... ei4>/2 sech 1/2 x sinh x (second solution) 

..... _ e3i~/2 cosh3/2 x = _ f312 

(and further applications of L+ produce more unbounded 
functions. ) 

Although this adaptation of angular momentum theory 
has yielded the eigenvalues of H, other familiar techniques 
require the shift operators L ± to be adjoint. This can ~ 
achieved only by using an unusual inner product, as dIS
cussed later in Sec. V. 

III. OPERATORS CHANGING THE POTENTIAL 

The operators (4) were obtained by applying the trans
formation tanh x = cos () to the (angular momentum) oper
ators which are the components ofL(O,t/J) = - rxV. The 
same transformation can be applied to the components of 
V = i a I ax + j a lay + k a laz, using the polar coordi
nates () and t/J, but eliminating the radial coordinate r by 
setting r = 1 and alar = O. For example, 

a a sinO a . a a 
- = cos 0.::- - -- ---+ - SID (}-:::- = -. az ar r a() ao ax 
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This produces (with a factor - i to get standard commuta
tors) 

u. . a 
0= -I ax' U ± = e ± i"'(i sinh x~ ± cosh x~) 

ax ar/J 
(12) 

giving 

[L ± ,U ± ] = 0, [L ± ,Uo] = += U ± ' 

[L±,U'F] = ±2Uo, [Lo'Uo] =0, 

[ L o, U ± ] = ± U ± . 

(13) 

(14) 

These equations are the commutation relations of a vector 
operator, so selection rules on matrix elements are expected. 
Those rules which arise because factors eik'" produce ~k.k' 
terms are irrelevant for matrix elements (of momentum Uo, 
for example) between solutions of (1). However, one can 
conclude that U ± may change v by ± 1, shifting to a differ
ent potential. Also (14) and (12) show that U ± raise and 
lower the energy eigenvalue and do not change parity. If f/l'k 
denotes a square-integrable solution of (1), then (k> 0) 

U ± f/l'ke-ikl/> = (a± f/l'k± ~ + b ± f/l'k~ De-i(k 'FI)"'. 

(15) 

The first term does not appear when U _ acts on the lowest 
two states: 

U J - v = ivl - v-I, (16) 

U_(L-tf-V) = [iv/(v + 1) ](L-tf- v
-

I ). 

On a lattice of points representing solutions of (7), the ac
tion of the operators L ± and U ± can be indicated by arrows 
as in Fig. 1. 

It is well known 15 that the operators 

d d 
B=-+vtanhx, C= --+ (v+ 1) tanh x, 

dx dx 
(17) 

obtained from the Darboux transformation, generate eigen
functions of a different potential without changing the ener
gy: 

Bf/l'k = bf/l'k - 1, Cf/l'k = cf/l'k + I. (18) 

Figure 1 suggests that L =F U ± should be some combinations 
of Band C. From (4), (6), and (12) one gets 

± iL ± U'F = - (tanh x)L 2 + (1 +=Lo)~. (19) ax 
Applying each side of ( 19) to f/l~ _ n ei(n - v)", = L n+ I - v, the 
combinations of B and C required to give L'F U ± can be 
determined by inspection: 

i(2v+ 1)L+U_ = (v+ 1)(1-n)B-v(2v+2-n)C, 

i(2v + I)L_U+ = (v + 1)(2v - n - l)B + v(n + 2)C. 
(20) 

A normalization constant for the function L "-r I - v may 
be obtained by considering the construction of the same 
function by successive applications of C tol - v + ". Note that 
C in (17) depends on v, which increases by 1 with each 
application, so at this stage Cis rewritten C(v). The norma
lization integral for I - v + n can be evaluated using the f3 
function to get 
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FIG. 1. The energy eigenvalue - k 2 is lowered by L_ when k < O. 

f"" sechu x dx = r(lL).J'1T = [2"tr(.1.) F (21) 
- "" r(~ +.1.) 2r(U) 

Hence the normalized function for the ground state is 

[r(~ + v - n)/r(pr(v - n) p/2 sechv
-

n x. (22) 

The theory of the Darboux transformation givesl9 both the 
change in normalization when C is applied, and the change 
in the asymptotic form ofthe function. Applying to (22) 

C( v - n - 1 - j)/[ (2v - 2n + j)j] 1/2 

withj = 1 ,2, ... ,n, retains the normalization, and gives a func
tion with asymptotic behavior (as x -+ 00 ) 

[
r(2V-n+l)]1I2 1 ----e- (v-n)x. 

n!(v-n) r(v-n) 
(23) 

Comparing (23) with (11) shows that, provided n < v 
(k = n - v<O) 

I [
(v-n)r(2V-n+l)]112 

vn - v> = 
n! 

(24) 

is normalized. 
The commutators between components of U are 

[UO,U±] = +=L±, [U+,U_] = -2Lo. (25) 

Equations (5), (13), (14), and (25) exhibit a basis for 
an so( 3, 1) algebra. Its invariants are 

L 2 - U 2 = 0, U' L = O. (26) 

Since neither L ± nor U ± are complex conjugates, the alge
bra should be regarded as the complex algebra D2 rather 
than the real algebra so( 3, 1), and the "angular momentum" 
subalgebra is the complex algebra A I' 

IV. IDENTIFICATION OF REPRESENTATIONS 

The nonunitary representations of the complex algebra 
A I were classified by Sannikovl6 according to the number of 
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basis functions which are annihilated by the shift operators 
L ± . These functions have been called extremal vectors by 
Gruber. 17 Using (4), the partial differential equations 
(L ± ) u = 0 have solutions of the form u (x,t/J ) 
= f( e =F i'" cosh x). Assuming that the Casimir operator 

L2=L_L+ +L~ +Lo=L+L_ +L~ -Lo (27) 
has the eigenvalue "z + v then determines/. giving two two
dimensional subspaces of extremal vectors: 

L+ (afv + flf-v-') = 0 [cf. (10)], 

L_(af-v+flr+') =0 [cf. (8)]. 

(28) 

(29) 

The notation shows the eigenvalue of Lo as a superscript or 
subscript. 

Now consider the representation space containingf - v. 

If 

(30) 

then L +g _ v-I = f - v, and the representation space is 
spanned by the eigenfunctions ( of Lo) L ~ f - V, 
L ~ g _ v-I' The latter functions belong to the eigenvalues 
- v-I - n of Lo and so cannot be in the subspaces (28) or 
(29). ThefunctionL ~f- v belongs to the eigenvalue n - v; 

J 

it can be in (28) if2v = n (an integer), and it can be in (29) 
if 2v + 1 = n. However, the extremal vectors are all even 
parity, and L+ changes the parity, so the integer n must be 
even. 

The extremal vectors are therefore as follows. 
(i) If v is neither integer nor half-integer, thenf - v is the 

only extremal vector in the representation space. 
(ii) If v is an integer, there is one other extremal vector 

L 2.; f - v = (const )fv, annihilated by L +. 
(iii) If v is half-integer (2v is an odd integer), there is 

one other extremal vector (in addition to f - V) 

(31 ) 

also annihilated by L_. Note that (31) follows from the fact 
that the left-hand side is known to satisfy (7) with 
k = v + 1, and so has the form t/J(x)eik

"', where t/J is even and 
satisfies (1) with k = v + 1. Thus t/J is a multiple of (3). A 
similar argument applies in (ii). 

The representations can be illustrated by diagrams on 
which L + shifts to the right, L _ shifts to the left, and arrows 
indicate the extremal vectors. The numbers show the eigen
values of Lo, i.e., the weights. 

------------------------1-----------1 <<-----1--------...... . (I) 
;1-1 -1.1 ...... +1 -1.1+2 

.. L .. L 
+ 

Diagram (I) illustrates the case where 2v is not integer, the complete space realizing the representation 
D+ ( - v-I, - v), usingSannikov's notation. 16 That part of the space spanned bytheL n_ g -v-I [dashed line in Diagram 
(I)] can be omitted in favor of the invariant subspace spanned by the L n+ f - v, realizing the representation D + ( v). The 
representation D + ( - v-I, - v) is thus reducible but indecomposable. There is a [v] -dimensional subspace of square
integrable functions, but this is not invariant. 

------------1---------1 < ..... ---1-· .... ·-1---> 1------....... . 
...... -1 -1.1 ...... +1 11-1 II 1.1+1 

.. L 
+ 

(II) 

Diagram (II) illustrates the case where v is an integer, the complete space realizing Sannikov's D2 ( v,O). The invariant 
subspace spanned by the L n+ f - v realizes Sannikov's D2+ ( v). This is also reducible but indecomposable, and contains the 
(usual) finite-dimensional representation D ( v). This representation space has a 2v-dimensional subspace of square-integra
ble functions [each bound state of ( 1) appears twice with different factors e ± ik"'] , but also contains the zero-energy wave 
functionL v+f - v (see Sec. II). One could also realize Sannikov's D2- (v) by omitting theL ~f - V with n > 2v, and retaining 
the L n_ g _ v-I' (This is an undesirable alternative if e - ik'" with k> 0 is going to indicate a square-integrable function.) 

---------1-----1 <<----1-· ............ ·-1---1 <~-- ---....... . (III) 
...... -1 -II -&1+1 II 11+1 1.1+2 

Diagram (III) illustrates the case where 2v is an odd 
integer, the complete space realizing Sannikov's D + ( v,~). 
Omitting the L ~ g _ v-I gives an invariant subspace 
spanned by the L ~ f - v, realizing D 1+ ( v). This is also re
ducible but indecomposable: the invariant subspace spanned 
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I 
.. L ... 

by the L 2.;+ nf - v (n = 1,2, ... ) realizes D+ ( - V - 1). The 
quotient space 

{L~f-v: n=O,I, ... }/{L n+f- v
: n=2v+ 1,2v+2, ... } 

realizes the (usual) finite-dimensional representation D ( v). 
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This is formally obtained by taking only the functions 
L n+f - v (n = 0,I, ... ,2v) as a basis, and including in L+ a 
projection operator P off the denominator space, so that 
PL+ (L 2:'f- V) = PfV+ 1= O. The representation space has 
a (v + ~) -dimensional noninvariant subspace of normaliza
ble functions. For every half-integer k<.v, both the even and 
the odd solution of ( I) appear in the basis for 0 + ( v,~). 

When 2v is not an odd integer, representation spaces are 
also obtained by taking the second solutions of (I) of the 
opposite parity as basis functions. Then all functions in the 
representation space are unbounded. The details can be ob
tained from the work given above by the substitutions 

L+++L_, rp- - rp, v- - v-I. (32) 

For integer v Sannikov's 0 1 (v,O) => 0 ± ( - v-I) is real
ized, while DI± (v) and D( v) can be obtained from quotient 
spaces. If (32) is applied to the 0 + ( v,~) representation 
shown in Diagram (111), then Sannikov's 
D-(v,!) =>Di (v) =>0-( -v-I) is realized. 

Another discussion of indecomposable representations 
was given by Gruber and Klimyk.17 The representation in 
Diagram (II) realizes the T A given in their Fig. 6, with 
A = - v-I; the representation in Diagram (III) realizes 
the TA given in their Fig. 7, with A = v. Similarly the repre
sentations using unbounded second solutions of ( 1) realize 
their U A' In their later paper18 realizations of 
Dt( -A-1)andD+( -A-l)aregiveninEq. (10.1), 
and a realization ofD2 (A,h) given in Eq. (l0.4) (h = 0 or 
~). 

Gruber20 has also given indecomposable representa
tions of the algebra D2, defining extremal vectors as those 
annihilated either by both U + and L + or by both U _ and 
L_. For a given k, the unique functions annihilated by U ± 

are 

U ± (sinh'f k x)eikt/> = O. (33) 

Equations (10) and (33) show that there are no such vectors 
satisfying Gruber's definition in the representation spaces 
used here, which are therefore inequivalent to any of the 
representations considered by Gruber. 

V. MATRIX ELEMENTS 

When v is an integer, the functions (24) can be ex
pressed in terms of spherical harmonics by comparing (24) 
with the analogous equation from angular momentum 
theory: 

y-m=[ (I+m)! ]1I2LI_mY_I. 
I (2/)!(I- m)! + I 

Apart from the factor ei(n - /)t/>, and with cos fJ = tanh x, 

[(21- 2n)/(21 + 1)] 1/2y I-I + n(fJ,rp) (n = 0,1, ... ,1- 1) 
(34) 

are thus the normalized eigenfunctions "'~ _ n for the poten
tial - 1(1 + 1 )sech2 x. Known matrix elements for spheri
cal harmonics should therefore translate into results for the 
Rosen-Morse system, subject to two provisos. First, there is 
no result from a matrix element that vanishes from the inte
gration over rp. Second, because - sin fJ dfJ = sech2 x dx, 
the angular momentum matrix elements of any operator V 
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will correspond to the Rosen-Morse matrix elements of the 
operator (sech2 x) V. 

The simplest example uses the normalization condition 
for the spherical harmonics: 

1 = [I Y i'- 112 sin fJdfJ 

= + Irft- n 12 sech2 x dx. 
21 1 foo 
2/- 2n - 00 

(35) 

The expectation value for the potential energy 
- 1(1 + 1)sech2 x is therefore -1(1 + 1 )(2/- 2n)1 
(21 + 1); since the energy eigenvalue is - (I - n) 2, the ex
pectation value for the kinetic energy is (1- n)(2nl 
+ n + 1)/(21 + 1). The orthogonality condition for the 

spherical harmonics Yj and Yf gives no result for the Ro-
sen-Morse system unless m = M, when it shows that a po
tential matrix element is zero if evaluated between eigen
states with the same energy but for potentials differing by an 
integer change in v: 

Loo "" ilL n "'L~ ~ sech2 x dx = 0 (k> 0, n </). 

Although this argument only demonstrates results 
when v is an integer I, a proof of a spherical harmonics prop
erty for integer 1 will usually apply to any Rosen-Morse 
states by using the integral in (35) to define their inner prod
uct. Denote this by parentheses, and use an asterisk for the 
corresponding complex conjugation of operators: 
(vn - VIJL m -JL) 

= (211") -If~ ".eit/>(m -/1- n + vldcp 

X L""oo:;k - n "'J: - m sech2 
x dx, (36) 

(~)* - -~ L* -L L*-L acp - acp' + - -, - - +. (37) 

To get (37) from (36) one must assume that v - JL is an 
integer. 

Using (22) and (21), the expectation valueofsech2 x in 
the ground state is 

(v -vlv -v) =vl(v+~). (38) 

A recurrence formula for the expectation value in other 
states can be derived using (36), (37), and (27), 

Vn = (Ln+f-v,Ln+f- v) 

= (L n+-Ij-v,L ~ L+L n+-Ij-v) 

=n(2v-n+ l)vn_ l • 

Incorporating the normalization factor given in (24) shows 
that (v n - vlv n - v)/(v - n) is independent of n, and 
(38) gives the value 1/ ( v + !). Thus the above results on 
expectation values of potential energy and kinetic energy 
extend from integer 1 to arbitrary v. 

Results can also be deduced from the matrix elements of 
L±. From (24), ifn<v, 

L+lvn - v) 

= [(v - n)(n + 1)(2v - n)/(v- n - 1)]1/2 

xlvn-v+l), (39) 
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and using also (27) gives 

L_lvn - v) 

= [n(v-n)(2v-n+ l)/(v-n+ 1)]1/2 

Xlvn-v-I). (40) 
These equations show that L ± are equivalent to the n-de
pendent operators An and en used by Bauhain 13 or the oper
ators A n± used by Nieto and Simmons. 14 Our operators L ± 

avoid the n dependence by introducing the extra variable ¢l, 
as in the treatment of the hydrogenic radial functions by 
Armstrong.3 The basis functions used by Sannikovl6 satisfy 
different equations owing to different normalization. 

From (39), (40), and ( 4 ) one obtains the Rosen-Morse 
matrix elements of sinh x and of cosh x (d / dx); these opera
tors playa basic role in Nieto and Simmons' definition of 
coherent states. 
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On the problem of local hidden variables in algebraic quantum mechanics 
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Given two Bose-type quasilocal C*-algebras.if, gjJ, their state spaces E(.if) , E(gjJ), and a 
positive, unit preserving map L: gjJ -+.if, respecting the local structure of.if and gjJ 
(.if ,E(.if») is said to have (gjJ,E(gjJ») as a local hidden theory via L iffor all states tp in E(.if) , 
L *tp can be decomposed in E(gjJ) via a subcentral measure into states with pointwise strictly 
less dispersion than the dispersion of tp. After motivating this definition oflocal hidden theory 
it is shown that if, in addition, L factorizes on disjoint local algebras, then (gjJ, E(gjJ») is not a 
local hidden theory of (.if ,E(.if») via L. 

I. INTRODUCTION 

In this paper we prove a negative result on the following 
problem: Let .fIf,f1lJ and E(.fIf), E(f1lJ) be two unital C*
algebras and their state spaces, respectively, 1 and let L: 
f1lJ -+.fIf be a linear onto map that maps the unit of f1lJ into the 
unit of .fIf and has the property x>O implies Lx>O. Such a 
map L will be called a positive, unit preserving map and the 
set of all positive, unit preserving maps from f1lJ onto .fIf 
will be denoted by ~(f1lJ,.fIf). If LE~(f1lJ,.fIf), then 
(L *tp) (x) = tp(Lx), xEf1lJ , defines a state L *tp over f1lJ for 
all states tp in E(.fIf). The problem is under what conditions 
on .fIf ,f1lJ and a positive map LE~ ( f1lJ ,.fIf) is it true that for 
every tp in E ( .fIf) we can find a positive, normalized (regular 
Borel) measurell on the state space E( f1lJ), with the help of 
which L *tp can be obtained in the integral form 

L *tp(x) = f w(x)dll(w), (1) 

such that the dispersions of all the states occurring in the 
integration are strictly less than the dispersion of tp; more 
precisely: For all fJJESUpp Il and all xEf1lJ we have 

u." (Lx) > u., (x), if u." (Lx) > 0, (2) 

u." (Lx) = u., (x), if u." (Lx) = 0, (3) 

where u." (Lx) = tp «LX)2) - (tp(Lx»)2 and u., (x) 
= w(x2) - (w(xW are the dispersions defined in the usual 

way and supp Il denotes the support set of Il, which is the 
smallest closed set in E ( f1lJ) with Il-measure equal to 1. 

This problem is a very natural generalization in opera
tor algebraic framework of the problem known for a long 
time as the problem of hidden variables in quantum mechan
ics. Thus in the case when the decomposition described 
above can be given, we call the pair (f1lJ ,E(f1lJ») a hidden 
theory of (.fIf ,E ( .fIf ») via the hiding map L. 

The original formulation of the hidden variable prob
lem, which was given by von Neumann, can be phrased as 
follows: .fIf equals to the C *-algebra of the bounded linear 
operators f1lJ (K) on some Hilbert space K, .fIf = f1lJ, and L 
is the identity map. Furthermore, as is well known, von Neu
mann demanded of the hidden states that they be dispersion
free, which was shown by him to be impossible under weak 
assumptions on K.2 

Later on, the problem was reformulated by Misra, who 

investigated the problem without assuming .fIf to be f1lJ (K) 
on some K but still keeping the requirement of the hidden 
states that they have zero dispersion on all observables, and 
also in his definition .fIf = f1lJ, L = identity. Misra proved 
that there is a nontrivial dispersion-free state in E(.fIf) if and 
only if.flf contains a nontrivial (closed) two-sided ideal Z 
such that the quotient algebra .fIf /Z is commutative, which 
implies that if.flf is simple (i.e., .fIf does not contain a nontri
vial two-sided ideal) then no state over .fIf can be dispersion
free. 3 

However, it is natural to generalize the hidden variable 
problem in the way done above for two reasons at least. First, 
one may argue that it can never be decided on a physical 
basis whether a state is strictly dispersion-free or not because 
of the finite, nonzero, unavoidable error occurring in every 
real physical measurement; therefore all the hidden variable 
definitions formulated in terms of dispersion-free states are 
physically too strong and inaccessible for measurements. As 
one seeks for hidden variables in the hope of becoming able 
to decrease the uncertainty--expressed by the nonzero dis
persion~f the quantum mechanical states by finding the 
hidden states, the requirement that the latter have strictly 
less dispersions seems to be the weakest requirement one 
should insist on. Second, the assumption that both the quan
tum mechanical states to be decomposed into hidden states 
and also the hidden states themselves are defined over the 
same algebra is a very strong restriction, which is mathemat
ically unnecessary and which is hard-if possible at all-to 
justify physically. 

Some negative results on the problem were proved for 
rather general .fIf, f1lJ, and L in a previous paper.4 However, 
it is the problem of local hidden variables that has become 
the main subject of research since Bell's work.s As the so
called quasilocal algebras were introduced into the field the
ory and statistical physics just in order to express the phys
ical locality concept in a mathematically precise and 
treatable way,6 it is very natural to investigate the problem in 
the case where .fIf,f1lJ are quasilocal algebras and bothL and 
the averaging process [that is, the measure Il in ( 1) consid
ered as a mathematical representative of some physical aver
aging process] respect the local structure of .fIf and f1lJ in 
some appropriate sense (see the definition of local hidden 
theory below). Before giving and motivating these locality 

833 J. Math. Phys. 28 (4), April 1987 0022-2488/87/040833-03$02.50 ® 1987 American Institute of Physics 833 



                                                                                                                                    

definitions we first describe briefly those quasilocal algebras 
that our result applies to. For more general quasilocal alge
bras the reader is referred to our standard reference. I 

II. QUASI LOCAL ALGEBRAS AND LOCAL HIDDEN 
THEORIES 

Let (/, <) be a directed set endowed with a relation 1 
(called orthogonality) between pairs of elements of I such 
that (1) ifalEl, then there is an a 2Elwith a lla2; (2) ifa<al 

and a lla2' then ala2; and (3) if alai and ala2' then there 
is an a3El such that ala3 and a I' a 2<a3. Assume, further
more, that (/,<,1) has the following properties: For each 
pair a I' a 2El there is an element (the least upper bound of a I 
and a 2) denoted by a l Va2 such that (4) al<a l Va2, 
a 2<al Va2; and (5) ifal<a anda2<a, thena l Va2<a. For 
each pair ai' a2 there exists an alai such that a 2<al Va. 

A set I having all these properties is called an index set. 
Typically I consists of the open, bounded subsets of the con
figuration space R d ordered by inclusion and the orthogo
nality relation a lla2 corresponds to the disjointness of a l 
anda2· 

The pair (d, (d a' aEl») with an index set I is called a 
( Bose-type) quasilocal algebra if d, d a are unital C * -alge
bras and the following four conditions are fulfilled: (1) If 
a l<a2, then d a, cd a,; (2) d equals to the norm closure 
of the union U aeI d a; (3) the local algebras d a and d 
have a common unit; and (4) [Aa"Ba,] = 0 for all 
A ed a and Ba ed a if a lla2. We assume, in addition, 
th~t for ~ch aeI there i~ a Hilbert space K a such that d a is 
isomorphic to ~ (Ka ), the C *-algebra of all bounded lin
ear operators on K a' and that d a, U d a, generate d a, Va, 
in the weak operator topology. 

Definition: Let (d,(d a' aeI») and (~,(~ 13' {3EJ») be 
two quasilocal algebras. A positive map L from ~ onto d is 
called local if ( 1) the local algebras are mapped onto local 
algebras in such a way that (2) disjoint algebras are mapped 
onto disjoint algebras 7 and (3) the restriction of L to each 
local algebra is continuous in the ultraweak operator topol
ogy. 

Definition: A local map L is said to be locally Jactoriza
hie if L(Ap,Bp,) = LAp,LBp, whenever Ap, andBp, belong 
to disjoint local algebras. 

Besides the locality of the hiding map it is also necessary 
to request of J.l some kind oflocality property if the decompo
sition ( 1 ) viaJ.l is thought to be more than a mere mathemat
ical expression. To motivate the property J.l should possess, 
let us first define the restriction maps r 13: E ( ~ ) -+ E (~ 13 ), 

{3EJ, by (rpq;)(x) = q;(x) (xe~ 13)' Here r is known to be 
w*-continuous,8 thus given a Borel subset Ep of E(~p), 
r- I (Ep ) CE( ~) is the Borel set of states extending the 
states q; in Ep to the whole quasilocal algebra. Let 8l.{3 and 
EI) CE( ~ I) ) also be a Borel set. Then the Borel subset G 13 of 
E( ~) defined by 

Gp = rp-I(Ep) \rl)-I(EI) 

consists of states over the quasilocal algebra ~ that extend 
the states in Ep without extending any of the states in EI). 
This means that no information about the local algebra ~ I) 
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contained in EI) can be obtained from Gp and, similarly, the 
states in the accordingly defined G I) "do not feel" those prop
erties of the local algebra ~ 13 (disjoint from ~ I) that are 
described by the states in Ep. The idea of physical locality 
demands of J.l that it does not mix up the states in G 13 and G I), 
in other words, the two positive functionals (J)p' (J)I) obtained 
by averaging viaJ.l over Gp and GI)' respectively, 

(J)p = i (J) dJ.l({J), (J)I) = i (J) dJ.l ({J) , 
Gp G8 

should be independent. 
A natural independence condition of positive linear 

functionals over C *-algebras is their disjointness: Two posi
tive functionals {J)I' {J)2 are disjoint if the two representations 
1T OJ ,1T OJ associated with {J)I and (J)2 are disjoint, i.e., 1T OJ , 1T OJ 

ha~e n~ unitary equivalent subrepresentations.9 
" 

All this motivates the following definition: J.l is said to 
be local if for two arbitrary disjoint Borel sets E I' E2 in 
E( ~) the two functionals {J)I = fE, (J) dJ.l ({J) and {J)2 
= fE, (J) dJ.l ((J) are disjoint. Recall lO that a measure J.l on 

E( ~) is called a subcentral measure if for arbitrary Borel 
set E in E( ~), S E (J) dJ.l({J) and S E(.sli' hE (J) dJ.l ({J), are dis
joint. It is easily seen that if J.l is subcentral then it also is 
local in the sense above (the converse is obvious). We sum 
up with the following definition: Given (d,E(d») with a 
quasilocal algebra d, a hidden theory (~,E( ~ ») of 
(d ,E (d») via L is called a local hidden theory if ~ is a 
quasilocal algebra, L is local, and for each q;eE(d) we can 
find a subcentral measure J.l having the properties (1 )-( 3 ). 

III. A NEGATIVE RESULT 

Before stating our result we recall a few facts that will be 
used in the proof of it. 

A positive map Leg; (~ ,d) is a contraction, i.e., 
IILxll < IIxll for all x and for a positive Leg; (~,d) the gen
eralized Cauchy-Schwarz inequality is valid ll

: L(x*x) 
'> (Lx) * Lx for all normal (and, therefore, also for all self
adjoint) x. A state q; over the quasilocal algebra d is called 
locally normal if q; is given by a density matrix Pa on each 
local algebra d a . An arbitrary state q; is called factor state if 
the von Neumann algebra 1T '" (d)" generated in the 
Gel'fand-Naimark-Segal (GNS) representation 1T", in
duced by q; is a factor, i.e., there are no nontrivial projectors 
in the center 1T", (d)" n1T", (d)'. Note that the setoflocally 
normal factor states is nonempty by a straightforward argu
ment, 12 and a cluster-type characterization oflocally normal 
factor states is known. 

Theorem 13: The following two conditions are equivalent 
if q; is a locally normal state: (I) q; is a factor state; (2) given 
a leI and E> 0 there exists an a' such that 

1q;(Aa,Ba ) - q;(Aa,>q;(Ba ) I <EIIAa, II IIBa II, 

for all A a, ed a, ' all Baed a' and all ala'. 
We can now formulate the result. 
Proposition: Let d and ~ be quasilocal algebras with 

d simple. 14 Then (~,E( ~») is not a local hidden theory of 
(d,E(d») via a locally factorizable map L. 

Proof: Assume that (~,E( ~») is a local hidden theory 
of (d,E(d») via a locally factorizable map L and let 
q;eE(d) be an arbitrary state. With d being simple, no 
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state over d can be dispersion-free by the cited result of 
Misra; thus there is a self-adjoint X 1Efjj such that 
0' rp (Lx 1) > O. Integrating (2) with respect to It we get 

'P(LX1)2-Lxn>'P(Lx1)2- r W(X 1)2dlt(W). 
JE(8i) 

(4) 

The left-hand side of (4) is not greater than zero by the 
generalized Cauchy-Schwarz inequality for L; therefore if It 
is the Dirac--or point measure concentrated at L *tp--then 
(4) is a contradiction since the right-hand side of (4) equals 
zero in this case. 

Let fJJ now be a locally normal factor state over d. By 
the locality of L, L *'1' is a locally normal state over fjj, which 
is also a factor state by the following argument. Assume that 
L *'1' is not a factor state. Then by the theorem characterizing 
locally normal factor states there is a/31EJ and an €> 0 such 
that for all/3EJ there is a/32EJ, /321/3, and there are Ap, Efjj 13, 

and Bp, Efjj 13, for which the following inequality holds: 

IfJJ(LAp,Bp) - fJJ(LAp, )'1' (LBp,> I >€IIAp, II IIBp, II· (5) 

We may assume that /311/32' for if this were not the case, then 
choosing/33 = /31 V /32 and applying the theorem again with 
/33 as /3 we can find a /3 21/33 such that (5) holds with some 
BPi Efjj 13 i' But then /3 21/31 holds, too, by the properties of 
theindexsetJ. ThusAp, andBp, can be chosen from disjoint 
local algebras, therefore, by the local factorizability of L we 
get from (5) 

1'P(LAp,LBp,) - 'P(LAp, )'1' (LBp, ) I 
> €IIAp, II IIBp, II > €'IILAp, II IILBp, II, 

with some €' > O. This implies by the theorem and by the 
locality properties of L that 'I' is not a factor state. 

Thus L *'1' is a factor state, that is, 1T L.rp is a factor repre
sentation. Now let 1T# = S;(8i) 1T(Q dlt(w) be the direct inte
gral representation of fjj defined by It in the usual way}S 
Since It is subcentral it also is orthogonal,16 which implies 
that 1T# = 1TL .rp by the theorem of Effros;7 i.e., 1T# is a factor 
representation, too. The proofis complete by noting that the 
only subcentral measure that decomposes a factor represen
tation is the Dirac measure. This can explicitly be shown as 
follows: The map K # : L 00 (E ( fjj ),J.L) -+ 1T L .rp ( fjj )' defined by 

(fiL.rp,K#(!)1TL .rp(x)fiL .rp) = r !(w)w(x)dlt(w) 
JE(8i) 

is a *-isomorphism by Tomita's theorem. 18 If It is not the 
Dirac measure, then supp It contains at least two different 
points W1,W2' which can be separated by two Borel sets E 1,E2, 
such that 0 <1t(Et ) < 1. Let XE, be the characteristic func
tion of E 1• Then K# (XE,) is a nontrivial projector in 
1TL .rp (fjj )'. Since It is subcentral, K# (XE,) lies not only in 
1T L.rp (fjj )' but also in 1T L.rp (fjj )" by Proposition 4.2.9 of 
Ref. 1, i.e., K# (XE, ) is a nontrivial central projector of the 
von Neumann algebra 1TL .rp (fjj)", which is impossible since 
1T L.rp is a factor representation. 
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IV. CLOSING REMARKS 

It is well known that one of the assumptions, the "local
ity" or "factorizability" as it was called later,19 which the 
derivation of Bell's inequalities for stochastic hidden vari
ables was based on, has been criticized in the sense that it has 
been questioned whether it is a sufficient or even necessary 
condition of expressing physical locality for stochastic hid
den variables.20 More recently strong arguments have been 
given in favor of independence of the factorizability from a 
very reasonable physical locality condition21; thus the prob
lem of existence of stochastic local hidden variables has be
come in some sense open again and the proposition above 
may be a step ahead in clarifying the role of locality in the 
problem of hidden variables. The locality conditions in the 
definition of local hidden theory are quite natural; however, 
it would be desirable to know whether a proposition similar 
to the one proved here can be obtained without the assump
tion of local factorizability of L, which is less natural and 
which was motivated by the original factorizability proper
ty. 

It would also be interesting to know whether (d ,E ( d) ) 
has a local hidden theory (fjj ,E ( fjj ») via some L in the case 
where d, fjj are the more general quasilocal algebras of rela
tivistic quantum field theory. 

'For all the definitions and elementary facts in connection with the C*
algebra theory we refer to O. Bratteli and D. W. Robinson, Operator Alge
bras and Quantum Statistical Mechanics (Springer, Berlin, 1979), Vol. I, 
which will be used here as a standard reference. 

21. von Neumann, Mathematische Grundlagen der Quantenmechanik 
(Springer, Berlin, 1932). 

3B. Misra, Nuovo Cimento A 47,841 (1968). 
4M. RCdei, "Non-existence of hidden variables in algebraic approach," 
Found. Phys. (to be published). 

51. S. Bell, Physics (NY) I, 195 (1964); 1. S. Bell, in the Proceedings of the 
International School of Physics, "Enrico Fermi" Course 49 (Academic, 
New York, 1971). 

6G. Emch, Algebraic Methods in Statistical Mechanics and Quantum Field 
Theory (Wiley-Interscience, New York, 1972). 

7Two local algebras, .xl a, and .xl a,' are called disjoint if a Ila2' 
8See Ref. I, p. 351. 
9See Ref. I, p. 362. 
lOSee Ref. I, p. 363. 
"Proposition 3.2.4 in Ref. 1. 
12The steps of proof of Proposition 2.3.24 in Ref. 1 can be repeated with 

obvious modifications. 
13See Theorem 2.6.10 in Ref. 1. 
l4Note that the simplicity of .xl follows, e.g., if Fa (aeI) is a separable, 

infinite dimensional Hilbert space. See Corollary 2.6.20 in Ref. 1. 
15See Chap. 4.2.2 in Ref. 1. 
1"See Proposition 4.2.9 and Definition 4.1.20 in Ref. 1. 
l7See Theorem 4.4.9 in Ref. 1. 
18See Proposition 4.1.22 in Ref. 1. 
19 A. Garuccio and F. Selleri, Lett. Nuovo Cimento 23,555 (1978); see also 

Ref. 20. The term "factorizability" was particularly preferred by A. Fine 
(see Ref. 20). 

20 A. Fine, in Philosophy of Science Association 1980, edited by P. D. Asquith 
and R. Giere (Philosophy of Science Association, East Lansing, MI, 
1981); see also A. Fine, Phys. Rev. Lett. 49, 1536 (1982). 

21G. Hellmann, Synthese 53, 461 (1982). 
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Addition theorems for spherical wave solutions of the vector Helmholtz equation are 
discussed. The theorems allow one to expand a vector spherical wave about a given origin into 
spherical waves about a shifted origin. A simplified derivation of the results obtained earlier by 
Cruzan [0. R. Cruzan, Q. Appl. Math. 20, 33 (1962)] is presented. 

I. INTRODUCTION 

In many physical problems it is necessary to expand a 
multipole wave centered about a given origin into mulipole 
waves centered about a shifted origin. In this article we con
sider the expansion of spherical wave solutions of the vector 
Helmholtz equation. These are the well-known L, M, and N 
waves of electromagnetic theory. 1 The expansions are re
ferred to as addition theorems since the expansion coeffi
cients themselves satisfy the scalar wave equation. 

Addition theorems for vector spherical waves have been 
found earlier by Stein2 and by Cruzan.3 They started from 
the addition theorem for scalar spherical waves,4 which is 
recalled in Sec. II of this article. The addition theorems for 
the L, M and N waves are then derived by a tedious calcula
tion in spherical coordinates. We sketch the procedure in 
Sec. III. 

An independent derivation along the same lines for the 
special case when the origin is shifted in the z direction was 
given by Langbein,5 who was led to a different form which is 
not related in an obvious manner to the results of Stein2 and 
Cruzan.3 Langbein's5 expansion was generalized to arbi
trary directions of the shift vector by Gerardy and Ausloos. 6 

In the resulting form of the expansion the coefficients do not 
obviously satisfy the scalar wave equation. This makes the 
expansion of Ref. 6 less elegant and less satisfying from a 
theoretical point of view. 

In Sec. IV of this article we show that addition theorems 
in the desired form may be derived straightforwardly and 
quickly from an extension of the scalar wave addition 
theorem to tensor multipole fields. The basic theorem was 
found by Danos and Maximon,7 who derived an addition 
theorem for tensor multipole fields by coupling unit tensors 
to both sides of the scalar equation and using known quan
tum mechanical angular momentum algebra. We refer to 
their article for an interesting review of the history of the 
problem. 

In Sec. V we compare in some detail with Langbein's5 
results. Throughout this article we adhere to the notation 
used by Edmonds. 8 

II. SCALAR WAVE ADDITION THEOREMS 

The scalar wave equation 

V2 f/! + k 2f/! = 0 (2.1 ) 

has spherical wave solutions 

\111m (r) = jl (kr) Ylm (fJ,tp) , (2.2) 

where jl (kr) is a regular spherical Bessel function and 
Ylm (fJ,tp) is a spherical harmonic. We wish to expand the 
solution \111m (r) into spherical waves centered about a shift
ed origin. The expansion yields the simplest wave addition 
theorem. We consider the three vectors r,p, and r' related by 

r = p + r', (2.3) 

and expand the corresponding plane-wave identity 

e,k" = e'k.p elk." , (2.4) 

into spherical waves using9 

e,k" = 417 ~ ;l\llim (r) Y1:., (fJk,tpk) . (2.5) 

Multiplying (2.4) by Ylm (fJk,tpk) and integrating over the 
directions of k one obtains 

\111m (r) = LA :':'m' (p)\III'm' (r') , (2.6) 
I'm' 

where 

A :~m' (p) = L cUm/I'm'/A,u)\IIAI' (p) , (2.7) 

with coefficients 

cUm/I'm'/A,u) 

AI' 

=l'+A-I (-1)m[41T(21+ 1)(2/' + l)(U + 1)]1/2 

X(I I' A)( I I', A). 
o 0 0 -m m ,u 

(2.8) 

The coefficients arise as integrals of products of three spheri
cal harmonics lO: 

c(im/I'm'/A,u) = 417l'+A-I J Ylm Y~'m' Yt. dO. 

(2.9) 

They are related to the coefficients in the expansion of a 
product of two associated Legendre functions: 

P';!'P~ = La(l'm'/AIlIl)P;'+1' (2.10) 
I 
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by3 

c(lml/'m'IA.p) 

=;1'+A-I [411" (2/' + 1)(2A. + 1)]112 
2/+ 1 

X [(I + m)!(I' - m')!(A - Jl)!] 112 a(l'm'IA II), 
(I-m)!(l'+m')!(A+Jl)! p, 

(2,11) 

where m = m' + Jl. 
The addition theorem (2.6) may be generalized to sin

gular solutions of the wave equation, which are the product 
of a singular spherical Bessel function and a spherical har
monic. In the following we generalize (2.2) to 

'l'lm(r) =J;(kr)Ylm«(),tp) , (2.12) 

whereJ; (;) is any of the spherical Bessel functionsjl (;), 
YI (;), h }l)(;), or h ?>(;). The regular solution (2.2) will 
be distinguished by a superscript: '1'/;:; (r). The generaliza
tion of (2.6) then reads7 

'l'lm(r) = L c(lmll'm'IAJl) 'l'l'm,(r> )'I'A~(r<), 
I'm' 
AI' 

(2.13 ) 

where r < is the smaller and r> is the larger of p and r'. It is 
understood that 'l'lm (r) and 'l'l'm' (r> ) contain spherical 
Bessel functions of the same type. Clearly, the expansion 
(2.13) may be written in two ways. We may either write 

'l'lm (r) = L A :':'m~ (r < )'I'l'm' (r> ), (2.14) 
I'm' 

or 

'l'lm(r) = ~,A:':'m,(r> )'I';;-m,(r<), (2.15) 

where we have used the symmetry of the coefficients 
c(lmll'm'IAJl) in the pairs (l'm') and (AJl) which follows 
from (2.9). 

III. VECTOR WAVE ADDITION THEOREMS 

The vector wave equation 

V2E+k 2E=O (3.1 ) 

has spherical wave solutions that may be derived from scalar 
potentials which are solutions of the scalar wave equation. 
Thus one finds the three vector spherical waves 1 

LJM(r) = k -IV'I'JM(r) , 

MJM(r) = VX(r'l'JM(r»), (3.2) 

NJM(r) = k -IVX [V X (r'l'JM (r»)] . 

The L wave is longitudinal and the M and N waves are trans
verse. The latter are related by 

MJM = k -IVXNJM, NJM = k -IVXMJM . (3.3) 

More explicitly, the solutions may be written as 

LJM(r) = [lI(2T+ 1)lfJ_dkr)AJM «(),tp) 

+ [lI(2T + 1) lfJ + I (kr)BJM «(),tp) , 

MJM(r) =jj(kr)CJM«(),tp) , (3.4) 
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NJM(r) = [(J+ 1)/(2T+ l)lfJ_I(kr)AJM «(),tp) 

- [JI(2T+ l)lfJ+dkr)BJM«()'tp) , 

where the vector spherical harmonics are given by 

aYJM 1 aYJM 
AJM = JYJMer + -- ee + -.--- etp , 

a() sm () atp 

aYJM . 1 aYJM 
BJM = - (J + 1) YJMer + -- ee + -,--- etp , 

a() sm() &p 

1 aYJM aYJM 
CJM =-----ee ---e. 

sin () atp a() tp 
(3.5) 

The latter are related to the normalized vector spherical har
monics defined by Edmonds II by 

AJM = ~J(2T + 1) YJ,J-I.M , 

BJM = ~ (J + 1 )(2J + 1) YJ,J+ I.M , 

CJM = - NJ(J + 1) Y JJM . 

(3.6) 

The angular momentum operator for the vector waves is 
J = L + S, where L = - irxV and S is the spin operator 
for spin 1. The vector spherical waves (3.4) are eigenfunc
tionsofJ2 with eigenvalueJ(J + 1) and eigenfunctions ofJz 

with eigenvalue M. 
By applying the operator k -I V> to (2.14) and noting 

that r = r < + r> , one finds the addition theorem 

In the same manner, by applying the operator k -I V < to 
(2.15), one finds 

A similar method may be used for the derivation of addition 
theorems for the M and N spherical waves. One starts from 
the definition of MJM (r) in (3.2) and applies either the op
erator V > X (r to (2.14) or the operator V < X (r to (2.15). 
These procedures each yield an addition theorem for 
MJM (r). The addition theorems for NJM (r) then follow 
from (3.3). The first procedure leads to 

MJM(r) = L [F~kf;:' (r < )MJ'M' (r> ) 
J'M' 

+ G~kf;:, (r < )NJ'M' (r> )] , 

NJM(r) = L [G~kf;:,(r< )MJ'M,(r» 
J'M' 

+ F~kfM+' (r < )NJ'M' (r > )] • 

The second procedure yields 

+ G~kfM' (r > )NJ-i;M' (r < )] , 

NJM(r) = L [G~kfM,(r> )MJ-i;M,(r<) 
J'M' 

+ F~kfM' (r> )NJ-i;M' (r < )] . 

(3.9) 

(3.10) 

Explicit expressions for the coefficient functions F~kfM' (p) 
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and G~~M' (p) may be found by a tedious calculation in 
spherical coordinates. The calculation was first performed 
by Stein2 and by Cruzan.3 An independent derivation for the 
case where p points in the z direction was given by Lang
bein. s Cruzan's3 result for the coefficient function F~~M' (p) 

may be written as 

(3.11) 

and his coefficients/(JM IJ'M'IA,u) may be cast in the form 
I 

/(JMIJ'M'IA ) = J(J + 1) +J'(J' + 1) -A(A + 1) 
,u 21'(J' + 1) 

Xc(JM IJ'M'IA,u) . (3.12) 

Similarly, the coefficient function G~~M' (p) may be written 
in the form 

G~~, (p) = ~ g(JM IJ'M'IA,u)'I'AP (p) , 

with coefficients 

(3.13 ) 

(JMIJ'M'IA ) = [(J +J' -A)(J +A -J')(A +J' +J + I)(A +J' -J + 1)Jl/2 d(JMIJ'M'IA ) 
g II- 21'(J' + 1) II- , (3.14) 

where, in analogy to (2.8), the coefficients d (JM IJ'M' IA,u) 
are given by 

d(JMIJ'M'IA,u) 
= jJ'+A-J( _ l)M+ I 

X [41r(21 + 1) (2J' + I)(U + 1) Jl/2 

x(J ~ 1 ~' ~)( _~ :;, ~). (3.15) 

Using Edmonds'S relation (3.7.16) one sees that (3.14) 
differs in sign from Cruzan's3 result. The sign error in Cru
zan's result was also noted by other authors. 12.13 

The derivation of the results (3.9) and (3.10) following 
the method outlined above is lengthy and tedious. In Sec. IV 
we show how these results may be derived more quickly and 
more elegantly. 

IV. IMPROVED DERIVATION 

An improved derivation of the addition theorems for 
vector spherical waves may be based on the generalization of 
the scalar addition theorem (2.13) to tensor multipole fields 
as presented by Danos and Maximon.7 Tensor wave fields 
are defined by coupling unit tensors to the scalar fields, for 
example, 

'IIJ;k(r-)--=ir(kr) L (lm'Ss'I/SJM)Ylm,«(),rp)e~S] 
m·t 

(4.1 ) 

in the notation of Fano and Racah. 14 By coupling unit ten
sors to both sides of the scalar addition theorem (2.13), one 
finds 

'IIl;k(r) = L CIS] (JIM 1J'I'M'IA,u) 
J'I'M' 

Ap 

X'II!:';1, (r> )'I'A-;' (r < ) , 

with coefficients 

CIS] (JIM 1J'I'M'IA,u) 

=;1'+A-/( _1)S-M 

X [41r(21 + 1)(2/ + 1)(21' + 1) 

X(2/' + l)(U + l)Jl/2 

(4.2) 

x(1 I' A)( J J' A){A J' J} (4.3) 
o 0 0 -M M' ,u S I I' 
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I 
(we have corrected the prefactor given by Danos and Maxi-
mon7

). An alternative generalization of (2.13) is 

'IIltk(r) = LeIS] (JIMIJ'I'M'IA,u) 
J'I'M' 

Ap 

XlJI!:';1;(r< )\{IAp(r». 

For S = 1 the definition (4.1) becomes 

lJIlflt (r) =lJI JIM (r) = ir (kr)YJIM «(),rp) 

and (4.4) becomes 

lJIJIM(r) = L c[I](J1MIJ'I'M'IA,u) 
J'I'M' 

Ap 

(4.4) 

(4.5) 

(4,6) 

Here the orbital quantum numbers I and I' can take the val
ues J - 1, J, J + 1 and J' - 1, J', J' + 1, respectively. It is 
clear from (3.4), (3.6), and (4.5) that lJIJIM(r) is just a 
linear combination ofLJM (r), MJM (r), and NJM (r) waves. 
The addition theorems (3.8) and (3.10) therefore follow 
from (4.6) by simple operations with 3X3 matrices. We 
recall that the symmetry properties embodied in the form of 
the addition theorems (3.8) and (3.10) are due to the vector 
field relations (3.2) and (3.3). We may use these symmetry 
properties to simplify the expressions for the coefficients. 
Thus we find for the coefficient function F~~, (p), 

JM [J(J+1) ]112 
F J'M' (p) = J'(J' + 1) 

X ~ C[I] (JJM IJ'J'M'IA,u)\{IAI' (p) (4.7) 

and for the coefficient function G ~~M' (p), 

GJ~ ,( ) =i[ J(21+ 1) ]112 
J M P J'(J' + 1) 

X ~cll] (J,J-l,MIJ'J'M'IA,u)\{IAP(p), 

(4.8) 

Substituting (4.3) for S = 1 and using expressions for the 
Wigner 6j symbols given by Edmonds, 15 we hence obtain the 
expressions (3.11) and (3.13). 
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v. DISCUSSION 

An important feature of the addition theorems (3.9) 
and (3.10) is that the coefficient functions F~~M' (p) and 
G ~~, (p) themselves are solutions of the scalar wave equa
tion. LaRgbeins has derived an addition theorem for vector 
spherical waves for the special case where p is directed along 
thez axis. His result (5.36) is ofthe form (3.10), with 

F~~M'( -aez ) =1':."V':.,":(ka)oMM" 

G~~M'( -aez ) =1':."W':.,":(ka)oMM" 

with coefficients 

FM = (_ l)J+M 
JJ' 

(5.1) 

x [(21+ 1)(21'+ 1) (J-M)! (J'_M)!]1I2 
(J + M)! (J' + M)! 

(5.2) 

and functions 

V':." (;) = U':." (;) - {(J' -M + 1) 

[(J' + 1)(21 + 1) n;U J,J , + 1 (;) 

- {(J' + M)/[J'(21' + 1) n;UJ,r _ 1 (;) , 

W':.,,(;) =iM[J'(J' + l)]-I;U':.,,(;) , 

withU':." = U7-J and for J<J', 

(5.3 ) 

(
2)MJ-M 

U':.,,(;) = I v~o (-1)" 

xr(J-v+Vr(J' -v+pr(M +v+!) 
r(J+J'-M-v+ nr(M+Dr(!) 

(J +J' - v)! 
X (J -M - v)!(J' -M - v)!v! 

X (J +J' -M - 2v+! )1J+J'-M-2v (;). 
(5.4 ) 

(We note that the functions Vand Wemployed by Gerardy 
and Ausloos6 are slightly different.) 

Langbein's functions U':." (;) are defined from his ver
sion of the scalar wave addition theorem. Comparing his Eq. 
(5.34) with (2.15) for p = - aez we obtain 

U':." (;) = [I':." ] -I I( _ 1)" (U + 1)112 
" 417' 

Xc(JMIJ'MI.-tO)f«;). (5.5) 

Cruzan's relations (16) and (19), when specialized to 
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p = - aez ' agree with (5.1) and (5.3) when (2.11) and the 
above expression (5.5) for U':." (;) is used [except for the 
opposite sign in the function W':." (;)]. From (3.11) and 
(3.12) we find by specializing to p = - aez ' 

V':." (;) = [I':.,,] -I.? ( - I)" [U4: 1 r2 

X/(JMjJ'MI.-t 0)/" (;) , (5.6) 

with/':." defined by (5.2) and/(JM IJ'M'I.-t,u) defined by 
(3.12). 

The validity of (5.5) may be proven directly from (5.4). 
One first proves the identity for M = J and then uses the 
recursion relation (40) derived by Gerardy and Ausloos6 to 
obtain the relation for general values of M. Similarly it 
should be possible to show (5.6) directly from (5.3). The 
derivation of (5.5) and (5.6) from the addition theorem is 
more straightforward. 

For general directions of the connecting vector p the 
coefficient functions appearing in the addition theorems 
(3.9) and (3.10) have the desirable property that they are 
solutions of the scalar wave equation. Gerardy and Ausloos6 

have generalized Langbein'ss addition theorem to arbitrary 
direction of p by performing a rotation of axes. This more 
general form is complicated and it is not evident that the 
coefficient functions satisfy the scalar wave equation. 

In conclusion, we note that the addition theorems 
(3.7)-(3.10) maybe used to derive similar theorems for the 
solutions of the equations of linearized hydrodynamics l6 

and elasticity. 17 
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The Schrooinger equation with a class of parabolic potentials has been studied. A constant 
of motion related to angular momentum has been calculated. It has been shown that the 
scattering states for these potentials can be defined only in some special cases. The Hartmann 
potential and the Aharonov-Bohm potential are studied as special cases. 

I. INTRODUCTION s = r - Z, 11 = r + Z, tp = tp. 

We note that in terms of these coordinates, 

( 1.3) 

The study of exact solutions of the Schrodinger equation 
with a noncentral potential is of considerable interest. The 
case of a two-center potential is a typical example. The po
tential has been used to study the scattering of low-energy 
electrons from a homonuclear diatomic molecule. The prob
lem involves a potential that may be written in prolate spher
oidal coordinates as I 

L = -If (l1-S) --- +l1S ---2 [ ( 0 0 ) ( 0 0 )2 
Os 011 Os 011 

V(S,l1,tp) = [u(s) + W( 11) ]I(s 2 - 112) (1.1) 

for which the Schrooinger equation is separable. Although 
angular momentum is not conserved in this potential, one 
can determine an operato~ 

.2" = L 2 + O(s,l1), 

with 

0= (S2-l)W(l1) - (l-112
)U(S) (1.2) 

/:,2 2 ' 
~ -11 

which is conserved. It may be interesting to look for a similar 
case in other coordinate systems. We present here a similar 
case with parabolic coordinates 

The condition can be satisfied with the choice 

..!.. [s aO(l1,S) ] 
M as 

= -..!.. [11 oO(l1,S) ] = l1S [w'(s) - u'( 11)], (1.8) 
M al1 

which implies 

w'(s) +!sw"(s) =U'(l1) +!l1U"(l1) = -K. (1.9) 

The solutions are given by 

w = - Cl/s - Ks, U = - C2111- Kl1, ( 1.10) 

giving for the potential 

aJ On leave from University College, Raiganj-733 134, West Bengal, India. 

(11 + S)2 ~] 
+ 411S 0t/J2· 

( 1.4) 

We assume that O=O(S,l1). The condition 

[H,.2"] = [Ho + V(S,l1), L 2 +O(S+l1)] =0, (1.5) 

gives 

[Ho,O] - [L 2,V] = 0, Ho = - ~ V2• (1.6) 
2M 

Considering a separable form of the parabolic potential 

U(S,l1) = [2u(s) + 2w(l1) ]I(s + 11), 

we get from (1.6), 

( 1.7) 

(1.11) 

where V= U + 2K. Again, from (1.8) and (1.lO), we have 

1 (Cl l1 Czt) -O(l1,S) = - -+- +a(l1) 
M S 11 

and also 

to 00 00_ 0 ~as+l101J- , 

so that a ( 11) = o. Therefore 

O(l1,S) = - M(Cll1IS + Czt /TJ}. 

(1.12) 

(1.13 ) 

(1.14) 

The operator .2" = L 2 + 0 is a constant of motion. In the 
special case CI = C2 = - b 12, we have 
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v = b Ir sin2 (J, 

n = Mb( 1 + cosz (J)/( 1 - cos2 (J). 

(1.15 ) 

( 1.16) 

The eigenvalue of L z gives another constant of motion 
and may be used to specify the energy levels. The potential 
V(S,7J) is noncentral and also singular along the z axis. The 
singularity may be restricted to only one-half of the z axis by 
the choice of either C I or C2 vanishing. The potential ( 1.15 ) , 
along with an attractive Coulomb potential, permits perfect
ly defined bound states with some exceptions, as will be 
shown in the next section. In Sec. III we shall consider the 
scattering states. Another application of the results will be 
made to study the problems with Aharonov-Bohm poten
tials in the last section. 

II. BOUND STATES 

It will be useful to consider the Schrodinger equation 
with the potential 

V = - 2al(s + 71) + 2[ (C~ + CI7J)/S7J(S + 71)], 
(2.1 ) 

where a Coulomb potential, also separable in these coordi
nates, is introduced. For E < 0, the solutions may be written 
as 

t/I(S,7J,tp) =N!I(S)!z(7J)e± jm
'P, 

where the J; satisfy 

~~(Xj aJ;) _!(4M Cj +mz)~+ ME Xj = 
J; aXj aXj 4 fil Xj 2fil 

(2.2) 

-Uj , 

(2.3) 

withx I = S,x2 = 71. TheconstantsO'j should satisfy the con
dition 

0'1 + 0'2 = Malfil. (2.4) 

Equation (2.3) can be written in the form 

1 a ( aJ; ) [Aj 1 S; ] 
tj atj tj atj + tj -"4 - 4t; J; = 0, 

(2.5) 

where 

Aj = O'Ja, a = (- 2MElfil) liz, 
(2.6) 

tj = ax;. S; = 4MCJfil + m2
• 

Considering appropriate boundary conditions, the solutions 
can be written as 

I'. = e - (I/2)~, r (112) IS,IL IS,I (r.) 
Ji ~ I Vi ~, (2.7) 

if Vj = nj = Aj - ! ( ISj I + 1) are non-negative integers. 
Note that for arbitrary Cj, the ISj I are not in general integers 
and hence the J; are generalized Laguerre functions. The 
series solution can still terminate, provided nj are non-nega
tive integers. The eigenvalue condition, therefore, is given by 

Ma
z 

[ 1 I Z 4MCI 
E= - 2fil n l +nz+ 1 +2"" m +~ 

+_ m2 + __ Z 1 ~ 4MC ]_Z 
2 fil 

(2.8) 

The energy levels are proportional to a2
• The effect of this 

noncentral potential can best be illustrated by considering a 
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TABLE I. Energy levels for repUlsive and attractive noncentral potential 
with d = I X 1O-2/eV. The dots indicate nonexistent states. 

E Nc' ENc_ Ec 

m n. +n2 eV eV eV n 

0 0 7.261 16 13.60582 1 
1 0 3.18803 3.65462 3.40145 2 
0 1 2.42463 

2 0 1.47833 1.54694 1.511 76 3 
1 1 1.44750 1.58541 
0 2 1.19883 

3 0 0.840 84 0.860 13 0.85036 4 
2 1 0.83620 0.86514 
1 2 0.82304 0.881 16 
0 3 0.71283 

4 0 0.540 56 0.54796 0.544 23 5 
3 1 0.53935 0.54922 
2 2 0.53696 0.55178 
1 3 0.53017 0.55991 
0 4 0.47202 

hydrogen atom with an additional potential of type (1.15). 
We choose a = eZ and 2Cj = b = (aZ/4)d, and obtain the 
energy levels as shown in Table I, where ENC+ and E NC- are 
energy levels for potentials with a repulsive or attractive 
noncentral part of the potential and Ec , that due to the Cou
lomb potential only. Note that for an attractive noncentral 
potential (i.e., b negative) there is no level with m 
< ( - 2Mb lfil) liZ. The S - state, in particular, does not 
exist for a negative b. 

An interesting application of these results may be found 
in the studies with the Hartmann potential given by 

( 
Z ) 

_ 2ao _ ao 
VCr) = 7J~ - - 71 r . Z Eo, 

r sm (J 
(2.9) 

where ao is the Bohr radius, Eo is the ground state energy of 
the hydrogen atom, and the parameters 1j and 0' are both 
positive real numbers. The potential is useful in the studies of 
ring-shaped molecules, like the benzene molecule. Hart
mann and his collaborators3

-
s have studied a number of 

problems with this potential. It is obvious that the results 
obtained above are directly applicable to the Hartmann po
tential. If one makes the substitution 

a = - 2ao1j~Eo, (2.10) 

2CI = 2C2 = -1j2~a~Eo' (2.11) 

the eigenfunctions and the eigenvalues are given by Eqs. 
(2.7) and (2.8). 

It has been shown by Kibler and Negadi6 that the prob
lem of motion of a particle in the Hartmann potential can be 
reduced to that of a coupled pair of two-dimensional an
harmonic oscillators with inverse quadratic potentials by 
considering a nonbijective canonical transformation. This 
transformation (Kustaanheimo--Stiefel transformation 7 ) 

corresponds to a mapping fromR 4 into the physical spaceR 3 

defined by the relations 

x = 2(U I U3 - U2U4), 

Y = 2(U I U4 + U2U3 ), (2.12) 
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Kibler and Negadi have shown that the Schrodinger equa
tion in this four-dimensional space for the potential (2.9) is 
equivalant to two two-dimensional nonharmonic oscillators 
subject to some constraints. However, it is easy to show that 
the "radial" parts of the two-dimensional oscillators corre
spond to the degrees offreedom S and 1/. It follows easily by 
noting that with the substitution 

p2 = Xi> 

Eq. (21) of Ref. (6) transforms into ourEq. (2.3). Thus the 
Kustaanheimo-Stiefel transformation in the present case 
leads us to the parabolic coordinates, which seem to be the 
natural coordinates for studying this problem. Also, the con
straint ( 15) of Ref. 6 obtained for the separation constants is 
identical with the condition (2.4) of the present work. This 
shows that the motions ofthe system in the s,1/ coordinates 
are constrained just as in two coupled anharmonic oscilla
tors with an inverse quadratic potential. 

III. SCATTERING STATES 

The wave functions of the nonlocalized states (E> 0) 
with the potential (2.1) can also be obtained from Eq. (2.3). 

Since a is imaginary, the series L ~il need not terminate in , 
this case. Putting 

a= -ik, k=(2MElfil)1/2, 

Al +A2 = iMalfilk, 

we can write 

FI (s) = N
l
e(i/2likss (i/2lIS,1 

(3.1 ) 

XF(!ISII +! - AI,ISII + 1; - iks) , (3.2) 

F2(1/) = N2e(i/2likTf1/(1/2lIS,1 

XF(!IS21 +! -A2,IS21 + 1; - ik1/), (3.3) 

where N I , N2 are arbitrary constants. 
In the scattering problem with the incident wave along 

the z axis, one has to put m = O. Considering the asymptotic 
behavior (s,1/-+oo) of the solutions (3.2) and (3.3), we 
have 

\{I-+ei(1/2lk(5+ Tfl r(YI + 1)r(Y2 + 1) 

X [Uk) - (iI2JY'UkS)A, -1/2 

r(AI + !YI + !) 
+ (_ik)-(1/2 lY,( -iks) -(1/2l-A, e- ikS ] 

n!YI +! -AI) 

X [Uk) - (i/2lY'(ik1/ )A, - 1/2 

r(A2 + !Y2 + p 
+ ( - ik) - (i/2ly, ( - ik1/) -1/2-A, e-ikTf] , (3.4) 

n!Y2 +! -A2 ) 

where 
V=i(A I +A2)= -Malli2k, (3.5) 

Yi = ~4MC;ljf , (3.6) 

with a < 0 and Ci > O. If\{l is to have the required asymptotic 
behavior, the coefficient of e - ikTf in the last term must van
ish. This can happen only if A2 = n + !Y2 + !, where n = 0, 
1, 2, ... , etc. Using Eq. (3.5) this will give Al = - iv 
- n - !Y2 - ! and make the factor S - 1/2 - A, diverge at in-
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finity unless Y2 = - 2n. The denominator of the third term 
then becomes r(1 - n), which gives n = 0, and hence 
Y 2 = 0, A I = -! - iv, A2 = !. Substituting these, we obtain 
the asymptotic solution. 

\{I-+1TVle2 k -(i12ly, r(YI + 1) 
r(1 + iv + !YI) 

X [ei[kz+vlnk(r-Zl + "'Y,/41 + r(1 +iv+!YI) 
ir(-iv+!YI) 

e - i[vln sin'012 + "'Y,/41 ei[kr- vln2krl] 
X 2 • (3.7) 

2k sin e 12 r 

Hence the differential cross section is found to be 

dO" = [y + QYI)2] (3.8) 
dO 4k 2 sin4 e 12 ' 

for the potential 

VCr) = air + Cl /r(1 - cos e). (3.9) 

The noncentral potential enhances the scattering due to 
the Coulomb potential, without altering the angular distri
bution. Thus whether the scattering potential is pure Cou
lombic or not cannot be decided by studying the differential 
scattering cross section with the incident wave along the z 
axis only. Note that a scattering state exists even if one puts 
a = 0 in (3.8), unlike the case of a bound state. As expected, 
the logarithmic phase factors drop out of the amplitude. 

It may be mentioned that for CI = C2 the only accepta
ble case corresponds to Ci = 0, which is the well-known pure 
Coulomb case. Thus even for a repulsive noncentral term, 
one cannot define a scattering state with the potential 
( 1.15). For the case of an attractive noncentral potential 
(Ci < 0), the situation, of course, is known to be worse. 
Since the most singular term in Eq. (2.5) is (11;;) 
X (m2 + 4MC;lfil) and we must choose m = 0 to satisfy the 
boundary condition at infinity, we get two oscillatory solu
tions at the origin, and there is no way of defining a scatter
ing state unambiguously.s Of course, one may consider the 
scattering of a beam incident on the potential along a direc
tion different from the z axis. 

IV. AHARONOV-BOHM POTENTIAL 

Another application of the results of Sec. II may be 
found in the problems with the Aharonov-Bohm (AB) po
tential.9 We take the AB potential in the spherical polar co
ordinates as 

Ar = Ao = 0 and A." = F 121Tr sin e, 
where F is the flux being carried inside a thin infinitely long 
solenoid along the z axis. In the limit of the radius of the 
solenoid going to zero, with F fixed, we have an idealized AB 
flux tube. We also place a point charge e at the origin. 

The Hamiltonian for a point charge e' bound to this 
composite system is given by 

li2 
2 ee' 1 

H= --V --+-
2M r 2M 

[ 
2ie'fzF a e'2F2] 

X -+ . 21Tcr sin2 e aq; 4rc2r sin2 e 
(4.1 ) 

To be applicable to the Hamiltonian (4.1), the results of 
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Sec. I need to be generalized, and we now consider the poten
tialoperator VCr) given by 

VCr) = 2u(S) + 2w(11) f(i~). (4.2) 
S+11 atp 

It can be shown that 

0= -M(Ct + C;)f(i ~). (4.3) 

Although one may define an operator vi( by 

vi( = rx( - iliV - e'(A Ie»), (4.4) 

which gives a conserved operator vl(2, it is not possible to 
identify vi( as the generator for the rotation group, since the 
eigenfunctions of vl(2 and vi( z = L z - eF 1211'c do not pro
vide a basis for a representation of the rotation group. 10 

Roy et al. II and Ruijsenaars 12 pointed out that the oper
ator L z = -ili(alatp)(tpE[0,211'[) is not essentially self
adjoint. They have defined a one-parameter family of self
adjoint extension by imposing the boundary condition 

t/J(tp = 211') = eifJ0t/J(tp = 0), (4.5) 

where ()o is a real parameter. The choice ()o = 2n11', n integer, 
corresponds to continuous wave functions. The eigenfunc
tions of H in (4.1) can be written as 

t/J=FI (s)F2(1])e im ''P, (4.6) 

where Fl and F2 are solutions ofEqs. (2.5) with 

m' = m + ()01211', Vi = n i , (4.7) 

Si = S~ S2 = (m' - e'F 1211'cIi)2. (4.8) 

Thus 
t/J = Ne- (1I2)a(H 'I) (a2S11)(l/2)IS IL ~~I(as)L ~~I(a11)e'm·'P. 

(4.9) 

The eigenvalues are given by (with ()o = 2n11' or otherwise) 

Me2e/2 1 
E =-- (4.10) 

n 2ft2 (n l + n2 + 1 + IS 1)2 ' 
which shows that solutions exist for all m', unlike the case 
treated in Sec. II. 
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The problem can be solved in spherical polar coordi
nates also. However, our results show directly that 

.2"=L 2 +O 

with 

(4.11 ) 

is a constant of motion. On the other hand, one needs an 
explanation why the operator vl(2 is a constant of motion, 
since it does not satisfy the Pauli-Fierz criterion here. The 
explanation actually comes from the relation 

'F 1 12F2 vl(2 =.2" _ _ e_ L + __ e_ (4.12) 
211'c z 2 ~C2' 

which shows that vl(2 is also a constant of motion. 
To summarize, we have shown that exact solutions of 

the Schrodinger equation with a class of parabolic noncen
tral potentials may be useful in the study of many physical 
problems. 
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Using the method of intertwining operators, commutation relations are rigorously obtained for 
the creation-annihilation operators associated with the quantum nonlinear Schrooinger 
equation. 

I. INTRODUCTION 

The quantum nonlinear Schrooinger equation (NLS), 

V - I"" = - "'xx + 2c",+fj? (1) 

is the best understood example of an integrable quantum 
field theory in one plus one dimensions. Solving (1) by the 
quantum inverse scattering transform (1ST), various auth
orsl

•
2 have introduced the creation and annihilation opera

tors b + (k), b(l) for the Bethe ansatz eigenstates (BAE) of 
the Hamiltonian H of NLS and their companions a (k), 
a+ (/) which are diagonalized by the BAE. The operators 
b(k), b + (k) and a(k), a+ (k) are the quantized scattering 
data for the classical NLS (Refs. 1-3). 

Regarding the transformation ",(x,t) -+b(k,t) as a lin
earization of (1), one needs to compute the commutation 
relations for b (k), b + (/). Due to the singularity of those, 
some crucial commutation relations do not exist and one 
introduces the normalized "quantum reflection coeffi
cients" R +(k) = b +(k)a-I(k) and tries to compute the 
commutation relations for R(k), R +(l) by quantizing the 
classical ones. Although everybody believes that the com
mutation relations between R + (/) and R (I) given in the 
literature are correct, in their derivations given so far one 
finds equations like fo dx eikx = 8(k)/2 (Refs. 4-6) which 
have no mathematical justification. 

In this paper we give a rigorous mathematical deriva
tion of the commutation relations for R + (k), R (I) both in 
the repulsive and attractive cases. This derivation has noth
ing to do with the quantum 1ST but is based instead on the 
intertwining operators approach to the quantum NLS as de
veloped in Refs. 7 -to. It is important to spell out the distinc
tion between our definition of the operators a(k), b(/) and 
the definition in the literature on the quantum 1ST (Refs. 2 
and 11). We first write the operators ao(k), bo(k) (Ref. 9), 
which have the desired action on the free eigenstates, then 
conjugate them by a suitable intertwining operator9 to ob
tain the operators a(k), b(l) with the same action on the 
BAE. In the quantum 1ST approach, the operators a (k) and 
b (I) are the normal ordered transmission and reflection co
efficients, respectively, of the classical NLS (Refs. 2 and 11). 
Although the explicit formulas for a(k) and b(/) obtained 
by these two recipes are very different, 10 the operators them
selves must be equal (at least in the repulsive case c> 0) 
because they have the same action on the BAE which are 
complete in the Pock space if c > 0 (Ref. 12). 

The paper relies especially on the material of Ref. 9, but 
can be read independently. The commutation relations 

between R + (k) and R (I) are important, in particular, be
cause they alone allow to write simple expressions for the 
integrals of the quantum NLS (Ref. 13). 

II. PRELIMINARIES ON THE NLS 

Let ",(x,t) be the solution of ( 1 ) and denote by "'+ (x,t) 
the adjoint field. Operators ",(x,t), "'+ (y,t) satisfy the stan
dard equal time commutation relations and "'+ (x,O) 
= "'0+ (x), ",(x,O) = "'o(x) are the standard creation-anni

hilation operators (in the position representation). Let 
"'o(x,t), "'0+ (x,t) be the solution of (1) with c = 0, i.e., the 
free fields and set 

bo(k) = f~ 00 dx e- v -lkx",o(X), 

b 0+ (k) = f~ 00 dx eV - Ikx"'O+ (x). 

(2) 

Then b 0+ (k), bo(l) are the standard creation-annihilation 
operators in the momentum representation and they satisfy 

[bo(k), bo(/)] = [b 0+ (k),b 0+ (I)] = 0, 

[bo(k),b 0+ (I)] = 21r8(k -I). 

Operators "', ",+, b, b + act on the Pock space 
00 

JY= e JYN 
N=O 

(3) 

where the N-particle sector JY N = L im(R N) consists of 
functions symmetric in N variables. We denote by w ele
ments of the permutation group S N (N varies from one to 
infinity) and by x -+ wx, k -+ wk the natural action of won N
tuples x = (X1, ... ,xN)' k = (kl, ... ,kN ). Operators b 0+ (k) 
create the normalized free eigenstates (plane waves) 

lo(xl,· .. ,xN Ikl, .. ·,kN ) 

=fo(xlk) = (N!)-1/2 L exp(V - l(wk Ix» (4) 
w 

of the free Hamiltonian (i.e., c = 0) 

Ho = - f: 00 dx "'0+ "'oxx· 

The Hamiltonian 

(5) 

H = f: 00- dx[ - "'+"'xx + C",+2",2] (6) 

of Eq. (1) preserves every JY N and the restriction 
N a2 

HIJY
N 

= - L -2 +c L 8 (x i -xj ) (7) 
i=1 aXi i'l') 
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is the famous Bose delta-gas Hamiltonian.7
•
12 

We call an operator A on 7t' (preserving each 7t' N) 

intertwining if A conjugates Ho with H and sends the free 
statesfo( 'Ik) into the BAE of H (in the normalization de
pending on A ). Referring the reader to Ref. 10 for the gen
eral theory of intertwining operators we consider the specific 
intertwining operators P and P * -I introduced in Ref. 9. The 
BAEf( 'Ik) = P *-Yo( 'Ik) of H are given explicitly by 

f( 'Ik) Ix.>" '>XN 

= (N!)-1/2 L w {II c + V - l(k; - kj ) 

w ;<j V-1(k;-kj ) 

xeXP(V-1(klx»}, (8) 

wherek = kl >k2> ... > kN and win (8) acts on the k vari
able. In what follows we denote the region {x 1 >x2> ... >x N} 
byC+. 

The operators 

b+(k)=P*-lbo+(k)P* (9) 

are the creation operators for the BAE (8). Equation (9) 
implies the obvious commutation relations 

[b + (k),b + (I» = 0 (10) 

(17) 

It follows immediately from (14) or from (16) and (17) 
that 

A 6' (k) =Ao(k)-I. (18) 

Obviously, ao(k), ao+ (/), Ao(k), A 0+ (/) all commute. We 
set 

a+ (k) = P *-Iao+ (k)P * = Pao+ (k)P -I, (19) 

A +(k) = P*-IA 0+ (k)P* = PA 0+ (k)P -I. (20) 

Equations (19) and (20) hold because ao+ (k) and A 0+ (k) 
commute with P*P. Operators a(k), a+(I), A(k), A + (/) 
are diagonalized by the BAEf( ·jkl, ... ,kN), therefore they 
all commute and we have 

a(k)f( ·lkl, ... ,kN) = ~(k;kl,· .. ,kN )f( ·lkl, ... ,kN), (21) 

A (k)f( ·Ikl, ... ,kn ) 

= t(k;kl,· .. ,kN) f( ·jk k) (22) 
It(k;kl, ... ,kN) j I"", N . 

By (18) and (20) 

butnotthecommutationrelationbetweenb+(k) andb(/) A +(k) =A(k)-I. (23) 

because P is not unitary, thus We set 

b(k) = Pbo(k)P -1""P*-lbo(k)P*. (11) R +(k) = b +(k)a-I(k). (24) 

Due to the singularity of b + (k) [they create BAE in the 
singular normalization (8)] it is questionable whether 
b + (k), b(/) have commutation relations and those written 
so far are incorrect [including (2.47) in Ref. 9]. 

Define the operators ao(k) by Eq. (2.32) in Ref. 9 and 
let ao+ (k) be the adjoint operator. Then, by Lemma 2.1 in 
Ref. 9 

ao(k)fo( ·lkl> ... ,kN ) 

[ 
N C+V-1(k-k;)] 

= IT foe ·lkl,· .. ,kN), 
;=1 V-1(k-k,) 

(12) 

(13) 

Thus ao+ (k), ao(/) are diagonal on the plane waves, there
fore they commute between themselves and with the opera
tor P*P(Ref. 9). By (12) and (13),ao(k),ao+ (k) aresingu
lar since they blow up onfo( ·lkl, ... ,kN) if k = k; for some i. 
We normalize ao(k) and ao+ (k) by introducing 

Ao(k) = ao(k) [ao+ (k)ao(k)] -1/2, (14) 
A 0+ (k) = ao+ (k) [ao+ (k)ao(k)] -112. 

Set for t ",,0 

~(t) = (c + V - It)IV - It (15) 

and for k ""kl, ... ,kn denote t(k - k l )" '~(k - kN) by 
t(k;kl, ... ,kN). By (12)-(15) 

Ao(k)fo( ·lkl,· .. ,kN) 

_ ~(k;kl,···,kN) 'Ik k 
- It(k;kl, ... ,kN) I foe I"'" N)' 

(16) 
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Then 

(25) 

III. COMMUTATION RELATIONS 

First, we establish the commutation relations between 
bo(k), b 0+ (k) and Ao(l), A 0+ (l). We fix c""O. 

Proposition 1: For k ""l, 

Ao(k)b 0+ (I) 

= (~(k -l)!lt(k -1) Ilb 0+ (l)Ao(k), (26) 

A 0+ (k)b 0+ (I) 

= (t(l- k)/lt(l- k) Ilb 0+ (l)A 6' (k), (27) 

bo(l)Ao(k) 

= (t(k -l)/lt(k -1) l)Ao(k)bo(l), (28) 

bo(l)A 0+ (k) 

= (t(/ - k)/lt(/- k) I)A 0+ (k)bo(/)' (29) 

Proof: We follow the ideas of the proof of Lemma 2.1 in 
Ref. 9. We set 

ao(k) = (21T) -I f: 00 dr[1og t(k - r)]b 0+ (r)bo(r). 

(30) 

Then 

ao(k) = exp[ao(k)], ao+ (k) = exp [ao+ (k)] (31) 

andtheoperatorsao(k),ao+ (/) commute for all k and 1. The 
commutativity and (31) imply that 

Ao(k) = exp{H ao(k) - a o+ (k)]}, (32) 
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Ao+(k) =exp{Hao+(k) -ao(k)]}=A -I(k). (33) 

The commutation relations 

[ao(k),bo(/)] = - [log ;(k - I) ]bo(/), (34) 

[ao(k),b o+(/)] = [log;(k-/)]b o+(/) (35) 

obtained in Ref. 9, Lemma 2.1, imply that 

[!(ao(k) - ao+ (k»),bo(/)] 

= -! log ;(k - I)bo(/) - !( -log ;(/- k)bo(/») 

= Hlog ;(1- k) -log ;(k - I) ]bo(/)' (36) 

Exponentiating (36) we obtain 

Ao(k)bo(/)A o-I(k) 

= [;(1- k)/;(k - I)] 1/2bo(l) 

= [;(/ - k)2/;(k - /);(/ - k)] 1/2bo(l) 

= [;(/- k)/I;(I- k) 1 ]bo(/), 

where we have used that;( - I) = t(l). The last equation 
means that 

Ao(k)bo(l) 

= (;(1- k)/I;(/- k) I)bo(/)Ao(k), (37) 

which is equivalent to (28). Equation (26) is proved the 
same way and (27), (29) immediately follow from (28) and 
(26), respectively. 

By taking the limit k - 1-+0 we will extend (26)-(29) 
to the case k = Ibut the limit commutation relations depend 
on whether k - 1-+0 + or k - 1 .... 0 -. To express these 
relations in concise form we introduce the following nota
tion. For any functionf(k) we setf(k + ) = limf(k ') as 
k '-+k + andf(k - ) = limf(k ') as k I .... k -. Recall that 
for c:;f 0, sgn c = 1 if c > 0 and sgn c = - 1 if c < O. 

Corollary 1: For a fixed c:;fO and for any k the following 
relations hold: 

Ao(k ± )b 0+ (k) ± (sgn c)V - Ib 0+ (k)Ao(k ± ) = 0, 
(38) 

Ao(k ± )bo(k) + (sgn c)V - Ibo(k)Ao(k ± ) = 0, (39) 

Ao+(k± )bo+(k)+(sgnc)V -lb o+(k)Ao+(k±) =0, 
(40) 

Ao(k ± )bo(k) ± (sgn c)V - Ibo(k)Ao(k ± ) = O. (41) 

Proof: Since ;(1) = 1 - cV - It -I goes to 
- (sgnc)V -1( + 00) when t-+O+ and to 
(sgn c)V - 1 ( + 00) when t-+O -, we have ;(1)1 
I;(t) 1-- - (sgn c)V - 1 when t-+O + and ;(t)/ 
I;(t) 1-- (sgn c)V - 1 when t-+O -. Moreover, ;(t)/ 
I;(t) 1 varies on the unit circle continuously and monotoni
cally from 1 to (sgn c)V - 1 when t runs from - 00 to 
0-. Then ;(t)/I;(t) 1 jumps from (sgn c)V - 1 to 
- (sgn c)V - 1 and completes the circle in the same fash

ion as t varies from 0 + to + 00. 

Taking the limit k -/-+0 ± in (26)-(29) we obtain 
(38)-(41). 

We have remarked earlier that the singularity of the cre
ation operators b + (k) is due to the singularity of the inter
twining operator P * -I which sends the free states fo ( '1 k) 
normalized to the IS-function into the BAE (8) which have a 
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singular normalization. Following an idea of Ref. 9 we take 
the polar decomposition of P * -I, 

p*-I = [p*-I(p*P)1/2](P*P)-1/2, (42) 

where Q = p*-I(P*P)1/2 is unitary (isometryifc<O) and 
(P * P) -1/2 is positive definite. The operator Q is a normal
ized intertwining operator and the operator (P * P) -1/2 is 
described in the following Lemma. 

Lemma 1: (i) The operator (p*P) -1/2 is diagona1ized 
by the free eigenstatesfo( 'Ik) and 

(P*P) -1/%( 'lkl, ... ,kN ) 

X[nl;(ki -kj)l]fo(·lkl, ... ,kN ). (43) 
r<J 

(ii) The operator (P*P)-1/2 commutes with ao(k), 
ao+ (k), Ao(k), A 0+ (k) for all k and 

bo(k)(P*P) -1/2 = [ao+ (k)ao(k)] 1/2(P *P) - 1/2bo(k), 
(44) 

(p*p)- 1/2b o+ (k) 

= b o+ (k) [ao+ (k)ao(k)] 1/2(P*P)-1/2. (45) 

Proof: Equation (43) follows immediately from Ref. 9, 
( 1.52) and it implies that (P * P) -1/2 commutes with any 
operators diagonalized by fo ( '1 k). Equations (44) and (45) 
are proved in the same way as (2.53) and (2.54) in Ref. 9. 

Recall that the normalized intertwining operator 
Q = p*-I(P*P)1/2 is unitary ifc;>O (Ref. 9). Ifc<O, Q is 
an isometry of JY on the spaceJYac of the absolutely contin
uous spectrum of H and we denote by Q -I = Q * the left 
inverse of Q. We denote by lac the orthogonal projection of 
JYonJYac • 

Corollary 2: For any k we have 

R + (k) = Qb o+ (k)A 0+ (k)Q -I, (46) 

R(k) = QAo(k)bo(k)Q -I. (47) 

Proof: By (24), (19), and (9) 

R +(k) =P*-lbo+(k)ao-l(k)P* 

= Q(p*p)- 1/2b o+ (k)ao l(k)(P*p)1/2Q -I. 

Using (45) and that (p*p)-1/2 commutes with ao(k), 
ao+ (k), we obtain 

R + (k) = Qb 0+ (k)ao- 1 (k) [ao+ (k)ao(k)] 1/2Q -I 

= Qb o+ (k)A o-l(k)Q-1 

which proves (46). Taking the adjoint and using (18) we 
obtain (47). Set 

Ro(k) = Ao(k)bo(k), R 0+ (k) = b 0+ (k)A 0+ (k) 
(48) 

and rewrite (47) and (46) as 

R(k) = QRo(k)Q -I, 

R +(k) = QR +(k)Q-I, 

(49) 

(50) 

respectively. Because of the unitarity (isometry if c < 0) of 
Q, it suffices to establish the commutation relations for the 
operators Ro(k), R 0+ (/). 

We fix c:;fO and set 

u(t) = [;(t)/I;(t)J]Z. (51) 
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Properties of ~(t) which we have discussed in the proof of 
Corollary 1, imply that t-+u(t) is a continuous mapping of 
the real line into the unit circle, that when t runs from - 00 

to 00, u (t) runs the circle from 1 to 1 counterclockwise if 
c>O and clockwise if c<O. Finally, u( - t) = u(t) and 
u (0) = - 1. We will need the following formulas for u (t): 

~(t)/~( - t) = ~(t)2/~(t)~( - t) 

= [~(t)/I~(t) 1]2 = u(t). (52) 

Thus 

u(t) = f(t) = ~(t) 
~(t) ~( - t) 

= c + V - It (c - V - It) - 1 

V -It -V -It 

c + V - It t - cV - 1 
= - = 

c - V - It t + cV - 1 
(53) 

Theorem 1: Operators Ro( k), R 0+ (I) satisfy the follow-
ing commutation relations for all k and 1 

R 0+ (I)R 0+ (k) = u(k -/)R 0+ (k)R 0+ (I), (54) 

Ro(l)Ro(k) = u(k -/)Ro(k)Ro(l), (55) 

Ro(k)R 0+ (I) = u(k -/)R 0+ (/)Ro(k) + 21T'~(k -I). 
(56) 

Proof: We have, by (48) 

Ro(k)R 0+ (I) =Ao(k)bo(k)b o+ (I)A 6" (I), (57) 

R 0+ (I)Ro(k) = b o+ (I)A 0+ (I)Ao(k)bo(k). (58) 

Interchanging A 0+ (/) with Ao(k) on the right-hand side of 
(58) and assuming that k =1= I we use the commutation rela
tions of Proposition I to get 

R 0+ (/)Ro(k) 

= [~(I- k)/I~(/ - k) I ]2AO(k)b 0+ (I)bo(k)A 0+ (I) 

= u(k - 1)-IAO(k)bo+ (I)bo(k)A 0+ (I). (59) 

Since u(t) is continuous at t = 0, (59) extends, by contin
uity, to all k and I. The canonical commutation relations (3) 

for bo(k), b 0+ (I) yield 

R 0+ (I)Ro(k) = u(k -I) -IAo(k)bo(k)b 0+ (I)A 0+ (I) 

- 21T~(k -/)u(k - I) -IAo(k)A 0+ (/). 
(60) 

Since u(O) = - I and Ao(k)A 0+ (k) = 1, (60) becomes 

R 0+ (/)Ro(k) = u(k - 1)- IR o(k)R 0+ (I) + 21T~(k -I), 
(61) 

which is equivalent to (56). Equation (54) is proved by an 
analogous but simpler computation which we leave to the 
reader and (55) follows from (54). 

Theorem2:TheoperatorsR(k),R +(1) satisfy the com
mutation relations 

R +(/)R +(k) = u(k-/)R +(k)R +(1), 

R(/)R(k) = u(k -/)R(k)R(/), 

(62) 

(63) 

R(k)R +(/) =u(k-/)R + (I)R(k) +21T~(k-/)1ac' 
(64) 
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Proof' By (46) and (47), R(k)R +(/) 
= QRo(k)R 0+ (/)Q -I which, by (56), is equal to 

Q [u(k -/)R 0+ (I)Ro(k) + 21T~(k -I)] Q-I 

= u(k -/)QR 0+ (I)Q -IQRo(k)Q-1 

+ 21T~(k -/)00- 1 

= u(k - /)R +(I)R(k) + 21T~(k -1)QQ -I. 

Since Q -I = Q * is the left inverse of Q, QQ - 1 is equal to the 
orthogonal projection on the range of Q which is Kac' Thus 
QQ -I = lac. This proves (64). Proofs of (62) and (63) are 
analogous but simpler and we leave them to the reader. 

Corollary 3: For c> 0 (the repulsive case) the operators 
R + (k), R(/) satisfy 

R(k)R +(/) = u(k - I)R +(I)R(k) + 21T~(k -I). 
(65) 

Proof: For c> 0 the Hamiltonian H has a purely abso
lutely continuous spectrum, \2 i.e., lac = 1 and (64) becomes 
(65). 

IV. SCATTERING STATES 

It is obvious that the operators R + (k) create BAE in 
some particular normalization. We show in this section that 
R + (k) are the creation operators for the scattering states 
/;n ('Ik) andfout ('Ik) of the Hamiltonian H. Some of the 
equations below have been obtained earlier using the quan
tum 1ST approach (see, e.g., Ref. 11). The purpose of this 
section is to derive these results using the more rigorous 
technique of intertwining operators. 

Recall (see, e.g., Ref. 9) that for any 
k = (k\ > ... > kN ), the scattering states /;n ('Ik) and 
!out ('Ik) are given by 

/;n(xlk)lc+ = (N!)-\12[exp(v -l(woklx» 

+ w~wo d(w,k)exp( V-I (wk Ix» ], 

(66) 

!out (xlk) Ic+ = (N!) -1/2[ exp( V - I (k Ix» 

+ L c(w,k)exp(v -1(wk Ix»], 
w#l 

(67) 

where wo is the longest permutation of N symbols. For any 
k = (k\ > ... > kN) the states /;0 ('Ik) and fout ('Ik) are 
proportional and 

!out ('Ik) = S(k\, ... ,kN )/;n ('Ik), (68) 

where S(kl, ... ,kN ) is the phase shift. We denote by 10) the 
vacuum vector. 

Theorem 3: (i) Let kl > ... > kN be arbitrary. Then 

R +(k\)"'R +(kN)IO) =!out(·lk\, ... ,kN ), (69) 

R +(kN)"'R +(k\)IO) =fin(·lk\, ... ,kN ). (70) 

(ii) For any kl > ... > kN and any k, 
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R (k)/out (·lkl,···,kN ) 
N 

=21T L u(k-kl)"'u(k-ki_I)8(k-ki) 
i=1 

><fout (·lkl> ... ,ko ... ,kN). (71) 

Proof: Equation (69) is trivially true if N = 1 and we 
prove it by induction on N. By the inductive assumption 

R +(k2)"'R +(kN)IO) =fout(·lk2, ... ,kN). (72) 

Recall thatf( '1 k) are the BAE in the singular normalization 
(8). It is straightforward to check from (8) that for 
k=(kl>···>kN), 

f('lk) = [n~(ki -kj ) ]lout('lk) 
l<} 

= [n~(ki -kj)]/;n(·lk). (73) 
l<} 

Thus by (72) and (73) 

R +(kl)"'R +(kN)IO) 

= R + (k l )fout (·lk2,···,kN) 

=R +(k l )[ II ~-I(ki -kj )]f(·lk2, ... ,kN) 
2<;i<j<;N 

= [ II ~ -I(ki - kj)]b +(kl)a-I(kl ) 
2<;i<j<;N 

Xf( ·lk2,···,kN) 

=[ II ~-I(ki-kj)]b+(kl) 
2<;i<j<N 

X LV2 ~ -I(kl - kp ) ]f( ·lk2,···,kN) 

=[ II ~-I(ki-kj)]b+(kl)f(·lk2, ... ,kN) 
I <;i<j<;N 

= [n~-I(ki -kj)]f(·lkl, ... ,kN) 
l<} 

= lout (·lkl,···,kN), 

which proves (69). By (62) 

R +(kN)"'R +(k l ) 

= [nU(ki -kj)]R +(kl)"'R +(kN). (74) 
l<) 

By (69), (73), and (53) 

R +(kN)"'R +(kl)IO) 

= [nU(ki -kj)]R +(kl)"'R +(kN)IO) 
l<) 

= [nU(ki - kj ) ]fout (·lkl,···,kN) 
l<} 

= [n U(ki - kj)~ -I(ki - kj )~(ki - kj )] 
l<} 

X/;n (·lkl,···,kN) 

= /;n (·lkl,···,kN), 

which proves (70). Equation (71) follows from (64) and 
(69) by a straightforward induction on N. We spare the de
tails. 
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The following assertion was shown in the course of 
proof of Theorem 3. 

Corollary 4: The phase shifts S(kl, ... ,kN) (68) for the 
delta-Bose gas Hamiltonian H are given by 

S(kl> ... ,kN) = II u-I(ki - kj ). (75) 
i<j 

Equation (75), which is well known, means, in particu
lar, that theN-body Smatrixofthe delta-Bose gas factorizes 
into the product of two-body S matrices S(k -I) 
= u-I(k -I). Factorizable S matrices have been much 

studied lately. 14 

v. DISCUSSION AND CONCLUSION 

Using the method of interwining operators we have 
rigorously obtained the commutation relations for the cre
ation-annihilation operators R + (k), R (I) much used in the 
literature on the quantum NLS and the quantum 1ST (Refs. 
5, 6, 11, 13, 15, and 16). These commutation relations de
pend on the coupling constant c via the coefficient 

u(k -l) = - c + 11 - l(k -I) = u (k -I) (76) 
c - 11 - l(k -I) c 

[see (53) and (62)-(64)]. The function t-+uc(t) behaves 
in a singular way in the c -+ 0 limit. This fact together with 
Uc (0) = - lIed to speculations about the singular charac
ter of the zero coupling limit and about the "fermionic char
acter" of the delta-Bose gas.13,IS As we have seen in the paper 
the "fermionic character" of the commutation relations 
(62)-(64) is due to the very peculiar normalization ofthe 
BAE creation operators R +(k). Moreover, the creation
annihilation operators R 0+ (k), Ro(l) for the free eigen
states satisfy the same "fermionic" commutation relations 
(54 )-( 56). Thus the "fermionic character" ofthe commu
tation relations has nothing to do with the "fermionic na
ture" of the delta-Bose gas. 

Let us introduce another set of creation-annihilation 
operators for the BAE of the delta-Bose gas. Recall that 
Q = P • -I (p. P) 1/2 is the normalized intertwining operator 
and that b 0+ (k), bo (I) are the creation-annihilation opera
tors for the plane waves (4). Set 

I/ln+ (k) = Qb o+ (k)Q -I, I/ln (k) = Qbo(k)Q -I (77) 

be the normalized BAE creation-annihilation operators. 
Theorem 4: (i) The operators I/ln (k), I/ln+ (/) satisfy the 

commutation relations 

[I/ln (k),I/ln (/)) = [I/ln+ (k),I/ln+ (/)] = 0, (78) 

[I/ln (k),I/ln+ (/)] = 21T8(k -/)1ac. (79) 

In particular, for c;;;'O, I/ln (k), I/ln+ (/) satisfy the standard 
commutation relations (3). 

(ii) The operators I/ln+ (k) create the BAE 
g( ·lkl, ... ,kN ) in the following normalization: 

I/ln+ (k l )' • 'I/ln+ (kN) 10) 

= g( ·lkl, ... ,kN) = (N!) -1/2 L W 
w 

(80) 
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Proof: Assertion (i) follows immediately from unitarity 
(isometry for c < 0) of Q and (3). Assertion (ii) is proved by 
a straightforward induction on N. It is a special case of a 
general formula for the intertwining operators and the BAE 
[see Ref. to, Eq. (2.31)]. 

Although f/!n+ (k), f/!n (/) are creation-annihilation op
erators for the quantum NLS, there is nothing fermionic 
about their commutation relations (79) and it was shown in 
detail in Ref. 9 that their zero coupling limit is nonsingular. 

To conclude, I hope that this paper helps to dispel some 
of the mysteries of the quantum NLS. 
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Recent interest in external field problems led to the determination of the classes of unitarily 
implementable gauge, axial gauge, and chiral transformations for the Dirac operator on a finite 
interval. Various charge quantization conditions are obtained. The algebra of charge operators 
is worked out and the well-known Schwinger term is identified. 

I. INTRODUCTION 

Since it was realized that fractional charged states may 
occur within quantum field theoretical models, l the quanti
zation of Fermi fields interacting with external solitonlike 
potentials was studied extensively.2 It was realized that not 
only the shape of the potential but also boundary conditions 
turn out to be essential. 

In all the treatments of the external field problem, inte
gral charged excited states occur, but the charge of the 
ground state may become fractional. It may be fixed using 
charge conjugation invariance1

; one may calculate a spectral 
asymmetry3 or one may define an index in a suitable man
ner.4 

On the other hand it has been realized that already a 
one-dimensional soliton potential compared to a constant 
external potential leads to unitarily inequivalent representa
tions of the canonical anticommutation relations (CAR) 
(Ref. 5), which shows that comparing the ground state 
charges for such problems has to be done carefully (see Sec. 
IV). 

In this paper we treat the "free" Dirac operator on a 
finite interval 

i.£. <I>(t,x) = 0"3 ~ ~ <I> (t,x), (1.1) at I ax 
where <I> denotes a two-component spinor depending on 
xe[O,I] and time; the associated time independent Dirac 
equation is given by 

(h",)(x) = 0"3+ ! ",(x) = A"'(X), (1.2) 

<I>(t,x) = e - Mt",(X), 

where we work in the Hilbert space ?C' = L 2( [0,1 ],dx) 
® C2, with scalar product denoted by (. ). With the help of 
boundary conditions we simulate interactions. It is easy to 
see that the deficiency indices of h, on a domain of absolutely 
continuous (a.c.) functions with ht/JeK and vanishing at the 
ends of the interval are (2,2); therefore there exists a four
parameter family of self-adjoint extensions. Introducing a 
unitary matrix U allows to parametrize all extensions of h, 
denoted by hu, by requiring that 

("'I (1») = U("'2(1») 
"'2(0) "'I (0) , 

U ia( cos eeiP 
-e 
- sinee iy 

sin ee
iy 

. ), 

- cos ee- iP 

( 1.3) 

with o<e < 11', O<a, {3,r < 211'. Here hu is defined by the 
symbol (1.2) with the domain of definition given by 

fiJ u = {t/JeKI"'a.c., h,peK, '" fulfills (1.3)}. (1.4) 

Solving (1.2) with boundary condition (1.3) is trivial and 
leads to a spectrum {A/}, nEZ,j= 1,2, and to associated 
eigensolutions (S ~,I (x), t ~,2 (x»): 

A/=a-O"jE+211'n, O"j = + 1 for j= 1, 

O"j = - 1 for j = 2, ( 1.5) 

/!" j ( ) =fj jq';"/x 1 2 
~ /l,a X ae , a = , , 

with cos E = sin e cos r, 0<E<11' and thef ja fulfill 

(

eM; _ sin ~ei(a + y) 

cos ee,(a-P) 

Let us remark that a suitable defined ground state 
charge is given by a/11' and varies therefore continuously 
with a (Ref. 6). 

Above we have obtained a four-parameter family of 
solvable Dirac operators for which we may define projection 
operators onto the positive and negative energy parts 

P+(x,y) = L t/(x)t/*(y), 
A./>O 

( 1.7) 

P_(x,y) = L t/(x)t/·(y)· 
;',/<0 

We note that in all of what follows we may shift the zero 
in energy by a finite amount without changing any conclu
sion. This will be used later on in order to obtain a suitable 
expression for the kernels of projection operators. 

Starting from the one particle space?C' and the C· alge
bra.sf generated by operators a(f) and at(f) withfe?C' 
and obeying the CAR 

a(f)a(g) + a(g)a(f) = 0, 

a(f)at(g) + at(g)a(f) = (f,g), f,ge?C', 
( 1.8) 

we may study quasifree states over that algebra, which are 
determined with the help of the projection P +: 

(JJp+ (a(f,,)" 'a(fl)at(gl)" 'at(gm») 

= ti llm det(J;,P +gj)' 0.9) 

From Ref. 7 we know that the Gerfand-Naimark-Segal 
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( G NS) representation 1T p corresponding to the state (() p is 
irreducible, since O<.P + <.1. We know furthermore that t~o 
representations 1T p and 1Tp. are unitarily equivalent iff 

+ + 

P +P'_ and P~P'+ belong to fIJ 2(K), the set of Hilbert
Schmidt operators over K. 

Our first task is to check whether different representa
tions defined above are unitarily equivalent. For this prob
lem and the following we shall need the following lemma. 

Lemma: Let h u be a particular self-adjoint extension of 
h with domain g u [Eqs. (1.3) and (1.4)] and eigenvalues 
A/andeigensolutions5/(x) [Eqs. (1.5) and (1.6)]. Letq 
denote a quadratic form defined by 

q(x,"') = L A/(X,5/) (5/,"')' x,f/JeQ(q), ( 1.10) 
J,P 

and form domain Q(q) 

Q(q) = {f/JeK1 ~ lA/I 1(5/,"') 12 < 00 } • ( 1.11) 

Then we deduce that 

Q(q) n{f/JeKI'" a.c., hf/JeK} = g u, ( 1.12) 

or equivalently if f/JeK is a.c. and hf/JeK then 
N 

UN = L A/I (5/,"'W, 
J.p=O 

(1.13 ) 
lim UN = u< 00 iff f/Jeg u' 
N~oo 

Proof: (a) Take first f/Jeg u and note that finiteness of 

"","
2 = L 1(5/,"') 12 < 00 and Ih u"'"2 = Ih","2 

J.P 

= L IA/121 (5/,"'W < 00 
J,P 

together with the Cauchy-Schwarz inequality proves finite
ness ofu. 

(b) Assume'" is a.c. and hf/JeK, but t/JEg u does not 
fulfill the boundary condition (1. 3) . We get 

(5/,h",) = A/(5/,"'> - cJ' cJ = i(AitA - BitB), 

AJ = (56,1 (1),56,2 (0»), BJ = (56,2 (1),56.1 (0»), 

A = ("'1(1)''''2(0»), B = ("'2(1)''''1(0»), 

where cJ is independent of p and cJ =1= 0 at least for onej. From 
the assumed finiteness of "h"," we conclude that 

A/(5/,"') ..... cJ =1=0. 
I pl~ 00 

As a consequence AN JI (5NJ,,,,> 12 goes like liN for N large 
and UN diverges with N ..... 00 • 

Next we are ready to check the conditions implying ine
quivalence of different representations and state our first re
sult. 

Theorem 1: The representations 1T p and 1Tp. of the 
+ + 

CAR, obtained from states (() p + and (() p'+ via the GNS con-
struction are unitarily equivalent iff U = U'; which means iff 
the self-adjoint extensions are identical. 

Proof: Let P +' P _ and P'+ ' P'_ be the projection oper
ators of Eqs. (1.7) corresponding to unitary matrices U and 
U'. From the kernel representions we get 
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Tr P'_ P + = y 9( - m -1)9(n)I(5/,5 ;:)12 

1t 
m," 

(1.14 ) 

and finiteness of (1.14) implies thatP'_ P +efIJ 2(K). Note 
that we have chosen the zero of energy such that 
(5/.P +5m k) = BJkB .. m 9(n) and similarly for P'_ . 

Changing the summation variables leads to 

Tr P'_ P + = y pi (5/'5f:/) 12. 
1t 

(1.15) 

From the Lemma [Eq. (1.13)] we deduce finiteness iff 
5 ~keg u for k = 1,2, which means that A ,k = UB,k for 
k = 1,2 with A ,k = (5 ~~ (1),5 ~~ (0») and B,k = (5 ~~ (1), 
5 ~~I (0»). On the other hand, A ,k = U'B,k for k = 1,2 is 
assumed. Since 5 ~k(X) for k = 1,2 are orthonormal in K it 
follows that A ,I is orthonormal in C2 to A ,2 and B ,I to B '2, 
too, which implies that U = U'. 

II. IMPLEMENTABILITY OF GAUGE 
TRANSFORMATIONS 

Let G be a group acting on Kby unitary operators {Va' 
aeG}, and let r a be the unique * automorphism of the alge
bra d, which reduces to Va on the one-particle operators 
a(/), 

(2.1 ) 

In order to have the automorphism r a to be implemen
ted in the GNS representation corresponding to the state 
( 1.9), there must exist a unitary operator r ( Va) acting on 
the Hilbert space Y of the GNS construction (being the 
antisymmetric Fock space Y over K), such that 

1TpJra (a») = n Va )1Tp + (a)r( Va) -I. (2.2) 

Therefore it is necessary that the two representations deter
mined by P + and by VaP + V;; I are unitarily equivalent, 
which is true iff 8 

Xa =P+ - VaP+V;;lefIJ 2(K). (2.3) 

The map a ..... Xa is a fIJ 2 (K) valued one-cocycle for G, 
which obeys the cocycle condition 

VaXpV;;1 =Xa,B -Xa' (2.4) 

Following Ref. 8 one may define one coboundaries as 
maps G ..... flJ 2(K) of the form Xa = C - Va CV;; I with 
CefIJ 2(K), and the first Hilbert-Schmidt cohomology 
group of G relative to the representation Va as the vector 
space of cocycles obeying (2.4) modulo coboundaries. 

We remark that extensive work has been done on the 
question of implementing gauge transformations for the free 
massive or massless Dirac operator on the fullline.9-11 Re
cently we have been dealing with similar questions for cer
tain external field problems on the line. 12 

Typically we shall consider gauge, axial gauge, or chiral 
transformations of the form 

(

e;t/>, (x) 0) 
V~ = 0 ~2(X)' (2.5) 

where we always assume ¢I; (x) to be C I. Note that condition 
(2.3) and the analog for P _ are equivalent to the conditions 
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P+VfP_E~2(K) and P_VfP+E~2(K) (2.6) 

since 

Tr PVP1V-1P = Tr(P- PVPV- I ) 

=! Tr(P- VPV-I)(P- VPV- I ) 

holds for any projection operator P. Therefore we shall study 
the group 

[§ = {Vf IVf unitary, P + VfP _E~ 2(K), 

P_VfP+E~2(K)}; (2.7) 

similarly to Ref. 9 one can equip [§ with a topology and 
results on the connected components of [§ and their relation 
to the Fredholm index of P + VfP + apply to our case as well. 
In the following we shall determine necessary and sufficient 
conditions on (>1 (x) and (>2(X) such that the local transfor
mations are implementable. 

We will find it convenient to distinguish three kinds of 
boundary conditions: 

(A) 9 = 1T/2, (B) 9 = 0, (C) 9,e:0,1T/2. 

Case (A) corresponds to two uncoupled modes, case (B) 
means coupling the modes independently at the ends of the 
interval; and case (C) means mixed boundary conditions. 

Case (A) opposed to (B) and (C) differs already ifone 
takes rigid transformations 

_ (ei.p, 0) 
Vf = 0 ei.p2' (>iER. (2.8) 

Invariance is implied in case (A) for any value of (>1 and (>2' 
while for cases (B) and (C) (>1 has to be equal to (>2 mod 21T. 

Theorem 2: Vf ofEq.(2.5) is unitary implementable in 
the representation 1Tp+ iff (>1 (x) and (>2 (x) fulfill the follow
ing boundary conditions: 

(A) (>1 (1) = (>1 (0) + 2m1T, (>2(1) = (>2(0) + 2n1T, 

m,neZ, 

m,neZ, 

m,neZ, 

(>1 (1) = (>2(1) + 2P1T, 

(>1 (0) = (>2(0) + 2( p + n - m)1T, peZ. 

Proof: In order to fulfill (2.6) we require finiteness of 

K=Tr(P+Vfp_Vf-1p+) < 00. (2.9) 

In the basis of orthogonal eigenfunctions ( 1.5) we get for the 
kernel K of P + VfP _: 

K(x,y) = I Sm j (x)9(m)9( - n - 1) (Sm j
, VfSn k) 

j,m;n,k 

XSn p( y). (2.10) 

From (2.10) we get for K 

K= I 9(m)9(-n-1)I(sm j,Vf S/)jZ 
j,m;n.k 

= I pi (s/,VfSOk)jZ, (2.11) 
j,k;p>O 

where again a change of the summation variable has been 
made. As in Theorem 1 we use next the lemma to conclude 
that K < 00 iff V.pS/E~ u for k = 1,2. 

Define 

A k = (S ~,I (1 )'S~,2 (0»), B k = (S ~,2 (1 ),S ~,I (0»), 

(2.12) 

(
ei.p,( I) 0) (ei.p,(1) 0) 

VA = 0 ei.p, (0) , VB = 0 ei.p,(O)· 

From orthonormality of s/(x) in K we deduce orthonor
mality of A 1 to A 2 and B 1 to B 2 in (;2. Rewriting the require
ments S/E~ u and VfSO kE~ u, means that A k = UB k and 
VAA k = UVBB k for k = 1,2 and therefore VA U = UVB. 
Inserting ( 1.3) yields the stated boundary conditions. 

Remark: From Theorem 2 it is trivial to deduce bound
ary conditions for gauge and axial gauge transformations 
and chiral transformations 

V.p= 
(ei.p(X) 

0 ei~X») , 
(ei.p(X) 

V.p = 
' 0 e-~(X») , 

(ei.p(X) 
V.p = 

L 0 ~) , V.pR = (~ ei.p~X») , (2.13 ) 

which we summarize in Table I (where m,neZ). Gauge 
transformations in case (B) are special. The fact that we get 
no restriction on (> means that we also have invariance for 
rigid transformations. 

III. SCHWINGER TERM 

In this section we shall treat the Schwinger term for our 
problem and follow the work of Lundberg. 13 We start as in 
Ref. 9 with the uniformly continuous one-parameter group 
of unitary transformations 

_ (eisU,(X) 
Vsu -- 0 

o( »), sER, 
e'SU2 x 

and define self-adjoint generators j u' 

(3.1 ) 

TABLE I. Boundary values for gauge, axial gauge, and chiral transformations implying that the transformations are unitarily implementable. 

Case V~ V~, V~L V~R 

(A) t,6(l) = t,6(O) + 217m t,6(l) = t,6(0) + 217m t,6(I) = t,6(0) + 217m t,6(l) = t,6(0) + 217m 
(B) no restriction on t,6 t,6(O) = ml7, t,6(0) = 217m, t,6(0) = 217m, 

t,6( 1) = nl7, t,6(l) = 217n, t,6(I) = 217n, 
(C) t,6(l) = t,6(0) + 217m t,6(O) = ml7, t,6(0) = 217m t,6(O) = 217m 

t,6(l) = (m + 2n)17 t,6(l) = 217n t,6(l) = 217n 
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. _ (U1(X) 
J~ - 0 (3.2) 

such that Vsu = exp(isju)' Vsu is implementable for all SER 

iff P-tiuP_EflJ2(K). The operators nv,u) form then a 
strongly continuous one parameter group o(unitaries on Y, 
and there exists by Stones theorem a generator Ju such that 

(3.3) 

In the next theorem we shall quote first conditions on 
Ui (x) such that the Hilbert-Schmidt criterion is fulfilled, 
and second, evaLuate the commutator algebra, which fol
lowing Ref. 13 is given by 

i[J~,J.U1] = -2ImTr(P-J~P-ti.U1) =S~.U1' (3.4) 

Theorem 3: (a) P +juP _E&U 2(K) iff U i (x) fulfill the 
following conditions: -

(A) u l (1) = ul(O) and U2(1) = u2(0), 
(B) u2(0) = ul(O) and u2(1) = UI(1), 
(C) u l (1) = ul(O), u2 (1) = u2 (0) 

and u2 (0) = U 1 (0), u2 ( 1) = U 1 (1). 
(b) IfP -tiuP _ andP +j.U1P _E&U 2(K), we obtain for the 

Schwinger term [Eq. (3.4)] explicitly 

SU.U1=_I- tdX(UI(X)W;(X)-U2(X)W~(X»). (3.5) 
- 21T Jo 

Proof: (a) We follow the proof of Theorem 2 and get 

(3.6) 

According to the lemma we get finiteness in (3.6) iff 
juSokE~ u for k = 1,2. Similar reasoning as in Theorem 2 
applies now replacing exp(itPi (x») by Ui (x). 

(b) From the kernel representation, 

(P -juP + )(x,y) = L Sm j (x)9(n)9( - m - 1) 
- mJ;n.k 

we first obtain 

Tr(P -J~P +j.U1) = "} p(S _/' j~Sok)(j.U1S/,S -/), 
11 

(3.8) 

and second, by a change of summation index, 

S~.U1 = i L p(j~So \S/) (S/' j.U1S/) (3.9) 
kj.p 

is obtained using (3.4). Since A/ = 21TP + a - UjE we may 
rewrite (3.9) as 

S~.U1 = 2~ ~ {(j~S/,hj.U1S/) 
- (a - UkE) (j~S/, j.U1S0 k)} (3.10) 

and finally get (3.5) after straightforward calculations. 
Remark: It is trivial to discuss special cases like 

. (U(X) 0) . (U(X) 0) 
Ju = 0 U(x) , Ju, = 0 - u(x) , 

. _ (U(X) 
JUL - 0 

results are listed in Table II. 

( 3.11) 

Remark: Similar as in Ref. 14 we may identify the for
mal Wick-ordered fermion currents with the generators Ju 

and introduce the time zero fermion field as -

",(x) = L Smj(x)Amj with Am j = 1Tp+ (a(Sm
j ») 

j,m 

(3.12) 

and the current as 

J~ = L t dx:",! (x) "'a (x):Ua (x). 
a= 1.2 Jo 

(3.13) 

Inserting (3.12) into (3.13) and rearranging terms yields 

J~ = L (So\ j~S/)Jp kj. (3.14) 
j.k.p 

The operators 

(3.15 ) 
n 

leave invariant a dense domain of vectors in Y with only a 
finite number of particles present which are fast decreasing 
in momentum space. They satisfy a Kac-Moody algebra 
with central extension 

(J/k,J/s] = Jts+qDrk -J;k+qDjs +pDp._qDjsDrk' 
(3.16 ) 

Using (3.14) and (3.16) for the calculation of the commuta
tori[J~,J.U1] yields immediately (3.9). 

IV. CONCLUSIONS 

In this paper we studied the Dirac operator on a finite 
interval; an "interaction" is simulated with the help of 
boundary conditions. This leads to solvable but nontrivial 
models. It turns out that two representations of the canoni
cal anticommutation relations determined by two Hamilto
nians with different boundary conditions are always inequi
valent. 

For each representation we studied the charged sectors 

TABLE II. Boundary values for functions with which a charge, axial charge, and chiral charges have to be smeared such that the one-parameter groups 
generated by the charges are unitarily implementable. 

Case 

(A) 
(B) 
(C) 

853 

u(l) = u(O) 
no restriction on u 
u(l) = u(O) 

u(l) = u(O) 
u(O)=u(1)=O 
u(O) = u(l) =0 

J. Math. Phys .• Vol. 28, No.4, April 1987 

u(l) = u(O) 
u(O) = u(1) = 0 
u(O) = u(l) = 0 

u(l) = u(O) 
u(O) = u(l) = 0 
u(O) = u(l) = 0 
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which can be reached by applying local gauge transforma
tions. Implementable transformations are obtained iff the 
gauge functions fulfill certain boundary conditions. These 
are therefore models which determine certain quantum 
numbers "by themselves." Concerning boundary conditions 
on the gauge function, Case (A), for example, is similar to 
the massless Dirac operator on an infinite interval. Case (B), 
on the other hand, is similar to the massive Dirac operator 
on an infinite interval. Gauge transformations need no re
strictions; axial gauge transformations are characterized by 
integers m and n. For all three cases n - m corresponds to 
the Fredholm index of P + VaP + and is equal to the winding 
number of the axial gauge function. 9,ll 

In addition we worked out the current algebra. As one 
expects the Fourier components of currents obey an infinite
dimensional algebra of the Kac-Moody type with central 
extension; the algebra of currents leads to a Schwinger term 
corresponding to an anomalous vector, axial vector commu
tator. The Schwinger term turns out to be independent of the 
boundary conditions. 

Clearly, by studying generators of gauge transforma
tions it is impossible to fix the charge of the ground state of 
our systems. One possible way is given by the spectral asym
metry3.6 

AQ= -! lim Tr(P+ _P_)e- tIH1'. (4.1 ) 
t-oo 

The fractional part of AQ turns out to be equal to ahr for our 
models.6 We are therefore dealing with systems with contin
uous varying ground state charge. Here aQ corresponds to 
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an effective charge, and to the charge difference of the sys
tem relative to the free one; it is well defined after using the 
regularization in (4.1), for instance. 
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The influence of the concept of weakly rigid almost-thermodynamic material schemes on the 
classical deformations is analyzed. The methods of the PPN approximation are considered. In 
this formalism, the equations that characterize the weak rigidity are expressed. As a 
consequence of that, an increase of two orders of magnitude in the strain rate tensor is 
obtained. 

I. INTRODUCTION 

In a preceding paper,l a definition of a weakly rigid al
most-thermodynamic material scheme was proposed. To 
verify the Ferrando and Olivert relativistic incompressibility 
condition,2 the concept given in Ref. I is affected by dynami
cal and kinematical considerations. Some geometrical con
sequences on the space-time are also deduced from it. 

The methods on the Hadamard discontinuities, used in 
Ref. 3, allow us to obtain absence of perturbations in a weak
ly rigid almost-thermodynamic material scheme. 

To make this study more realistic, several elasticity hy
potheses often used in the literature were analyzed. Their 
compatibility with the incompressibility condition was 
checked in Ref. 3. The study of the conditions of weak rigid
ity in such schemes led to the consistency of both formula
tions for the principal shock waves, assuming the nonvanish
ing of one of the Lame coefficients. To improve the obtained 
results, a relativistic generalization of the Hooke's law, in 
which the internal rotations were removed, was considered 
in Ref. 4. The weak rigidity in an elastic scheme of this kind 
leads to the Born condition and, so, to the absence of shock 
waves of any type. 

We think that our study about the weak rigidity must be 
completed. It seems interesting to us to analyze in which way 
a rigid motion (a weakly rigid almost-thermodynamic mate
rial scheme) particularizes in classical mechanics; i.e., to 
check if it has an appreciable effect on the classical deforma
tions. 

With respect to this point, let us say that some of the 
relativistic formulations that improve the Born condition 
have considered this matter. For instance, the work of Bona 
(Ref. 5) in special relativity recovers the classical rigidity in 
the nonrelativistic limit: inertial synchronization of (lR4 ,7]) 
obtained by parallel transport of a spatial hyperplane. 6.

7 On 
the other hand, Ehlers and Rudolph,8 when analyzing the 
concept of Dixon dynamical rigidity,9 propose the concept 
of pseudorigid motions and prove that they have the genera
lity of the classical ones. 

In the present work our aim is to study the conditions of 
weak rigidity by applying to them some techniques of the 
PPN formalism in general relativity. We will check the way 
in which they modify the strain rate tensor. 

Section II gathers together the basic formulas in the 
PPN approximation useful for the subsequent study. In Sec. 

III we give the PPN expressions for the weak rigidity equa
tions and the ones for the strain rate tensor. Some algebraic 
manipulations lead us to increase the order of the strain ini
tial calculation. 

The notation used in this paper is, basically, the one 
considered in Ref. 4. Greek indices range from 1 to 3 and 
Latin ones have values from 1 to 4. As usually in the almost
thermodynamic material schemes, we admit the Taub de
composition 

p=r(1 +E), (1.1 ) 

P being the proper mass-energy density of the scheme, with 
four-velocity u; rand E symbolize the matter density and the 
specific internal energy, respectively. 

For the energy-momentum tensor of the scheme we 
write, in the local form, 

( 1.2) 

the tij being the covariant components of the relativistic 
stress tensor. 

The metric tensor field g of the space-time manifold is of 
signature (3,1). The second-order Christoffel symbols asso
ciated with the linear connection V, compatible with g and 
without torsion, will be noted as r;k. 

Finally, as is known for the covariant components of the 
strain rate tensor of the scheme, we write 

dij = !(V;uj + Vju; + U; VuUj + uj Vuu;). (1.3) 

II. SOME EXPRESSIONS IN THE PPN APPROXIMATION 

Henceforth we will use the notation and results present
ed in Ref. 10, the baryon "mass" density Po in the notation of 
Misner-Thome-Wheeler being replaced here by the matter 
density r and the specific internal energy being symbolized 
asE. 

We will considerlO that the following quantities are af
fected by the approximation order, 0(2), ofthe magnitude 
v2 of the coordinate velocity field: 

U (Newtonian potential), 

taP (components of the stress tensor), 

p = !(tll + t22 + t 33 ) (pressure), 

E (specific internal energy). 

The tensorial expressions used here are given in a co-
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moving orthonormal frame with components (X I ,x2,x3,t). 

We will assume that the matter density r is of order 
0(0). The spatial partial derivatives will preserve the origi
nal approximation orders while the time derivatives will in
crease these orders in one unit. The partial derivatives will be 
represented by means of commas; d /dt will symbolize the 
operator time derivative following the matter, given by 
a/at +Va a/axa . 

We will now collect the post-Newtonian expressions 
useful to develop the weak rigidity equations. 

For the covariant components of the metric tensor field, 
we havelo 

g44= -1+2U-2U2+4'11+0(6), (2.1) 

g4a = - ~ Va -! Wa + 0(5), (2.2) 

(2.3) 

where Va' Wa are the vector functionals of order O( 3) and 
'11 the scalar of order O( 4) given, respectively, by Eqs. 
(39.23c), (39.23d), and (39.23g) of Ref. 10. 

For the connection parameters, we can write lO 

r~ = - u,t + 0(5), 

rl, = - u'a - 2'11.a + 0(6), 

r!,s = u,t8ap + i( Va.p + Vp.a ) 

+ !( Wa,fJ + Wp.a ) + 0(5), 

r~ = - u'a + (2U 2 - 2'11).a 

- ~ Va •t -! Wa •t + 0(6), 

(2.4 ) 

(2.5) 

(2.6) 

(2.7) 

r~ = u,t8afJ +2(Vp.a - Va,fJ) +0(5), (2.8) 

rpy = - (U.a8py - U,p8ay - U, y8afJ) + 0(4). (2.9) 

Here, in Eq. (2.5), we have inserted the terms of order O( 4 ), 
not considered in the approximation of Ref. 10. 

The contravariant components of the four-velocity u are 
givenlO by 

u4=1+!v2+U+0(4), (2.10) 

(2.11 ) 

in terms of the coordinate velocity. 
Next, we write the post-Newtonian expressions for the 

components of the energy-momentum tensor. For the con
travariant ones, the formulas given in Misner-Thorne
Wheeler are written, in our notation, as 

T44 = r(1 + E + v2 + 2U) + 0(4), (2.12) 

T 4a = r(1 + E + v2 + 2U)va + taPvp + 0(5), (2.13) 

TafJ = tap(1- 2U) + r(1 + E + v2 + 2U)vavp 

+ !(vatpyVy + VptayVy) + 0(6). (2.14) 

From Eqs. (2.12)-(2.14) and using Eqs. (2.1)-(2.3), 
we obtain the PPN expression for the trace of the energy
momentum tensor: 

(2.15 ) 

Now we are ready to obtain the PPN equations for the 
Ricci tensor. Let us consider the field equations 

(2.16) 
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Ebeing the Einstein constant, Rij the covariant components 
of the Ricci tensor, and R the scalar curvature. After con
tracting with the metric tensor field, we get 

-R=ET; (2.17) 

thus it is possible to express Eq. (2.16) in the equivalent 
form 

Rij=E(Tij-!Tgij)' (2.18) 

From Eqs. (2.18), (2.15), (2.1)-(2.3), and the covar
iant expressions ofEqs. (2.12)-(2.14), we deduce 

R~E = (r/2)(1 + E + 2v2 - 2U) + ~p + 0(4), 
(2.19) 

R4a/E = - r( 1 + E + v2 + 2U)va 

- taPvp + (r/4) (7Va + Wa ) + 0(5), 
(2.20) 

RafJ/E = taP + (r/2) [( 1 + E + 2U)8afJ 

+ 2vavp] - ~p8afJ + 0(4). (2.21) 

Finally, we write the PPN approximation of the baryon 
number conservation law (continuity equation), given by 
Vi (ru i

) = O. We get lO 

dr(1 +..!.. v2 + u) + j ..!.. dv
2 

+ 3 dU) 
dt 2 '\2 dt dt 

+rva.a(l+ ~ v
2
+U)=0(5). 

Moreover, we will use the expression 

dE 
r- + tapvaP = 0(5), 

dt . 

(2.22) 

(2.23 ) 

obtained in Ref. 10 after using Eq. (2.22), the conservation 
equation Vi (T4i) = 0, and the Newtonian equations ofmo
tion. 

III. PPN EQUATIONS OF WEAK RIGIDITY. 
CONSEQUENCES 

Let us remember that the equations which define the 
weakly rigid almost-thermodynamic material schemes, pro
posed in Ref. 1, are given by 

Futij = 0, 

Vur= VuE=O, 

in which Fu symbolizes the Fermi derivative II with respect 
to the four-velocity u of the scheme. In Ref. 1 an equivalent 
expression for the weak rigidity was deduced, given by 

FuRij =0, (3.1) 

ViUi = O. (3.2) 

Our present purpose is to express, in the PPN formal-
ism, Eqs. (3.1)-(3.2). We begin with the vanishing of the 
expansion velocity scalar. 

ByvirtueofEqs. (2.4)-(2.11),Eq. (3.2) can be written 
as 

1 dv
2 

dU (1 ) --+3-+vaa 1+-v2+U =0(5). (3.3) 
2 dt dt . 2 
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With respect to the PPN expressions ofEq. (3.1), let us 
take into account the formulas 

FuRij = VuRij - Rkj(u;Vuuk - u~uu;) 

- R;k (uj Vuuk - U~uUj)' 

By considering in the former equations the timelike, 
mixed, and purely spatial components and using the PPN 
approximation of the Christoffel symbols, the correspond
ing ones for the four-velocity, and Eqs. (2.19)-(2.21), we 
obtain 

~dr(1 +E+2.. v2
- u) 

dt 2 

+ r dE + 3 dp = O( 5), 
dt dt 

(3.4) 

(3.5) 

FuRafJ = 0 

~ dr[(l + E + ~ v2 + 3U){jafJ + 2VaVp] + r dE {jafJ 
& 2 & 

dp dtafJ 
-3di"{jap +2Tt =0(5). (3.6) 

We will now verify the way in which the weak rigidity 
conditions modify the strain rate tensor. 

Previously we expressed the components of such a ten
sor field in the PPN formalism. By virtue of Eqs. (2.4)
(2.11) we get, from Eq. (1.3), 

d44 = vavpvp,a + 0(5), (3.7) 

d4a = -!Vp(Va,p +vP,a) +0(4), (3.8) 

1 (dVp dVa ) dafJ =- v -+ vp--
2 a dt dt 

+ ~ (Va,fJ +Vp,a)(l + ~ V
2
+3U) 

1 dU 
+ "'2(VpVyVy,a + VaVyVy,fJ) + di" {jafJ + 0(5). 

(3.9) 

By subtracting Eqs. (2.22) and (3.3), the latter multi-
plied by the matter density r, we obtain 

~(1 + ~ v2 + u) = 0(5). (3.10) 
dt\ 2 
If we consider Eq. (3.4) and its corresponding contra

variant form, subtract both, and take into account Eq. 
(3.10), we derive 
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dr = 0(5). 
dt 
From Eqs. (3.4) and (3.15), we get 

rdE + 3 dp = 0(5). 
dt dt 

(3.11 ) 

(3.12) 

Ifwe imposefJ = a in Eq. (3.6) and sum for a ranging 
from 1 to 3 we obtain, after considering Eq. (3.12), 

dp = 0(5). (3.13) 
dt 

By means of the latter, use of Eq. (3.11) allows us to 
express Eq. (3.4) in the reduced form 

~; = 0(5), (3.14) 

from which Eq. (2.23) yields 

(3.15) 

after considering the symmetry of the relativistic stress ten
sor. Given that, in the approximation use here, the velocities 
are independent of the material structure, we deduce from 
Eq. (3.15), 

Va,fJ + vp,a = 0(3). (3.16) 

As a consequence of this result, the PPN expressions for 
the strain rate tensor, Eqs. (3.7)-(3.9), reduce to 

d44 =! vavp(va,fJ + vp,a) = 0(5), 

d4a = 0(4), 

dafJ = 0(3); 

(3.17) 

(3.18) 

(3.19) 

so, all the components of this tensor increase by two orders 
the initial approximation when applying the weak rigidity 
conditions. In particular, Eq. (3.9) contains the relativistic 
corrections to the Newtonian deformations; these terms 
drop out in the considered formalism. 

IV. DISCUSSION 

As was pointed out in Ref. 1, the weak rigidity condi· 
tions lead us, after considering substantial restrictions in the 
almost-thermodynamic material scheme given, to the Born 
rigidity condition. We have just obtained, however, the van
ishing of the Newtonian deformations from the weak rigidity 
without additional considerations. This fact would manifest 
that our concept of rigidity is not a pure replacement of the 
Born rigidity since, being in a certain way a dynamical defin
ition, our concept is more general than the Born condition. 
Let us remember the comments that Bonas makes about this 
point. 

With respect to the development of Sec. III, let us note 
that Eq. (3.5) has not been used. Nevertheless, from Eqs. 
(3.11) and (3.14), 

dtafJ 
vp Tt = 0(6), 

a result compatible with 

dt d; = 0(5), 

(4.1 ) 

(4.2) 

which follows from Eqs. (3.6), (3.11), (3.13), and (3.14). 
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On the other hand, let us indicate that the analysis of the 
weak rigidity conditions in the Newtonian approximation 
would not be enough for our study. In the matter, if we take 
into account the results presented in Ref. 10 for the Newtoni
an expressions of the metric tensor field, the energy-momen
tum tensor and the four-velocity, we get 

R.ulE =! r + 0(2), 

R4a/E = - rva + 0(3), 

Rap/E = ! rtiaP + 0(2), 

for the Ricci tensor covariant components. 

(4.3) 

(4.4) 

(4.5) 

Besides, the weak rigidity equations (3.1) and (3.2) can 
be written, at this level of approximation, as 

dr 
FuR44 = 0 :::} - = 0(3), 

dt 

ViUi=O :::} va •a =0(3). 

(4.6) 

(4.7) 

Note that, by virtue ofthe time component of the New
tonian local energy-momentum conservation law10 

dr 
-+rvaa =0(3), 
dt ' 

(4.8) 

Eqs. (4.6) and (4.7) are equivalent. 
With respect to the strain rate tensor, the Newtonian 

approximation gives us 

858 

d44 = 0(3), 

d4a = 0(2), 

dafJ = !(va,p + vp,a) + 0(3). 
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(4.9) 

(4.10) 

(4.11 ) 

Thus Eq. (4.7) is not applicable here: the absence of the 
higher-order corrections does not allow us to specify the real 
order of magnitude ofthe terms va,/J + vp,a when the weak 
rigidity equations are applied. 
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A new extension of the Kerr space-time that was found by this author in a previous paper [J. 
Math. Phys. 26, 1728 (1985)] is analyzed in this article. The case of a2 > m2 is of particular 
interest. The hypersurface at r = 0 acts as if it were a "source" for the geometry. There exists a 
natural mapping of the hypersurface to a double covering of the null sphere at asymptotic 
infinity via the principal null congruences. After a study of the obstructions to fibering the 
constant time cross sections of the hypersurface at r = 0, one finds that this two-surface 
transforms like a spinorialized version of Penrose's null flags. This connection is made by 
studying the effects of Lorentz transformations at asymptotic infinity on the doubly covered 
null sphere. Since there exists an inequivalent bundle structure on the two-surface at r = 0 that 
corresponds to an inequivalent spinorialized null flag, one concludes that to observers at 
stationary infinity the two-surface transforms as if it were a direct sum of two inequivalent 
Weyl spinors, a four-spinor. 

I. INTRODUCTION 

This article is an investigation of the global implications 
on the Kerr space-time that are induced by the geometry of 
the hypersurface at r = 0 (in Boyer-Lindquist coordinates 
which are used throughout this paper). As was discussed in 
a previous paper, 1 the geometry of this hypersurface is high
ly dependent on the manner in which the space-time is ex
tended through the ring singularity. This paper is essentially 
a development of the final section of Ref. 1 where it was 
shown that the hypersurface is not homotopically trivial as is 
commonly assumed in earlier attempts at extending the met
ric through the singularity.2 The emphasis of this paper will 
be on the case a2 > m 2

, where a is the angular momentum per 
unit mass associated with the source of the gravitational field 
and m is the mass of the source. It will be shown in the course 
of this paper that a product topology can be assumed for this 
hypersurface. Consequently, the geometry of the hypersur
face is essentially given by the two-dimensional spacelike 
surface resulting from constant time cross sections. 

The new extensions found in Ref. 1 revealed a two-di
mensional spacelike surface at r = 0 that is topologically a 
Klein bottle. The Klein bottle appeared as if it were a 
"source" for the external gravitational field. The global im
plications of this extension will be addressed in the following 
sense: What are the induced transformation properties of the 
hypersurface at r = 0 under the action ofthe Lorentz group 
as viewed in the stationary frames at asymptotic infinity? 
This is an instructive way of stating the problem if one is to 
interpret the Klein bottle as a source for the external geome
try. 

There is a natural connection between the hypersurface 
and the null sphere at asymptotic infinity, which allows the 
transformations induced from the action of the Lorentz 
group to be readily interpretable. It was found in Ref. 1 that 
to a set of preferred freely falling observers at r = 0, the prin
cipal null congruences formed a set of corotating normal 
vectors to the Klein bottle. These vector fields can be inte
grated out to the null sphere at infinity. It is through this 
mapping that a relationship between the transformational 

properties of the hypersurface and Penrose's null flags (de
fined in Ref. 3) can be established. For instance, the flagpole 
corresponds to the principal null geodesic with a spacelike 
component that is parallel to the total angular momentum 
vector of the gravitational field. The flag is associated with 
the azimuthal orientation of the Klein bottle. 

In order to understand the details of this mapping to the 
null sphere, one must investigate the cohomological obstruc
tions to trivializing various fiber bundles over the two-di
mensional spacelike surface at r = O. In the process, the ob
struction to finding a continuous nonzero cross section for 
the principal null congruences appears. It is these obstruc
tions that lead to a double covering of the space of Penrose's 
null flags by the set of orientations of the Klein bottle at 
r = o. This set of orientations gives the spinorialized ver
sions of the null flags that Penrose had to introduce in an 
ad hoc manner.3 

This paper begins with a brief recap of what was origin
ally deduced in Ref. 1. The particular extension through the 
ring singularity that was discussed in some detail in Ref. 1 is 
rigorously analyzed in Sec. II. First, the question of causality 
is studied. In spite of what is commonly stated in the litera
ture for the Kerr solution with a2 > m2

, the global space-time 
is essentially causal. There is a class of acausal timelike tra
jectories. However, they are not physically reasonable as 
they require diverging values of acceleration near the ring 
singularity. Earlier discussions of causality were totally de
pendent on the previously suggested extension of the space
time through the ring singularity proposed in Ref. 2. As a 
consequence, the global space-time had the property of being 
highly acausal. 4 

The emphasis of the main body of Sec. II is to extract all 
of the information that is contained in the geometry of the 
two-surface at r = o. Saying that there is a Klein bottle is not 
specific enough for the purposes of this paper. By virtue of 
the method of extension through the ring singularity the 
two-surface is endowed with additional structure. Specifical
ly, the geometry of the equatorial region determines how the 
surface rotates and how frames can be transported along 
curves. There is a detailed derivation of these properties. 
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Since the Klein bottle cannot be embedded in E 3
, one 

cannot simply draw this two-surface on a piece of paper. In 
keeping with the geometrical spirit of this article, numerous 
illustrations are used to elucidate the complicated twisted 
features of this two-surface. 

Various fiber bundles are constructed over the Klein 
bottle that are consistent with the fact that U2 (the topologi
cal symbol for the Klein bottle) is immersed in a four-dimen
sional space-time. In particular, the tangent, normal, and 
four-frame or R4 bundles over U2 are studied by means of 
characteristic classes and obstruction cocycles. This leads to 
the construction of spinorialized null flags. There exists a set 
of inequivalent bundle structures on U2 that induce an ine
quivalent set of spinorialized null flags at asymptotic infin
ity. After making Penrose's equivalence between spinori
alized null flags and Weyl spinors, one can conclude that the 
two-surface at r = 0 as viewed from asymptotic infinity 
transforms as if it were a four-spinor that was obtained by 
combining two inequivalent Weyl two-spinors in a manner 
that depends on the representation of the spinor algebra. 

II. THE HYPERSURFACE AT r=O 

In Ref. 1 the Kerr space-time was interpreted as a set of 
local Lorentz coordinate patches that were integrated in a 
global hypersurface orthogonal frame so as to foliate space
time. The insight that was gained proved to be particularly 
useful for analyzing the geometry of the hypersurface at 
r = O. At r = 0, the hypersurface orthogonal frame is par
ticularly natural as it is stationary with respect to asymptotic 
infinity. In the hypersurface orthogonal frame, the constant 
time cross sections appear to be spheres that have been 
"twisted" (see Fig. 1). The surface area would be precisely 
that of a sphere except that null geodesics in the hypersur
face (not geodesics in the four-manifold) that are projected 
onto the two-dimensional spacelike surface are not merid
ians but twisted meridians as pictured in Fig. 1. The null 
geodesics in the hypersurface are given by (2.1), 

a a a 
ao + al/J + at' 
a a a 
ao - al/J + at' 
a a a 
ao + al/J - at' 
a a a -----
ao al/J at 

Preferred freely 
fOiling frome 

Lorentz 
Boost 

(2.1a) 

(2.1b) 

(2.1c) 

(2.1d) 

Stotionory frome 

FIG. 1. The global mapping of the two-surface at r = 0 as viewed by locally 
inertial observers to its image in the stationary frames. 
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The meridians are twisted since the sphere as viewed in the 
stationary frames appears to be rotating so that the equator 
(which must be the region of maximum angular velocity for 
the rigid rotation of a sphere) is moving azimuthally at the 
speed of light. Consequently, the null meridians of the 
sphere receive an appreciable headlight effect as viewed in 
the stationary frames. 

It turns out that the twisted geodesics identify antipodal 
points on the equator of the twisted sphere. One concludes 
that the surface is topologically the real projective space 
RP 2. It was further observed from the structure equations of 
Cartan's method of moving frames for submanifolds, 

dw'" () = - K dA = w'" a /\ wa 
() + R '" () , (2.2) 

that K, the Gaussian curvature of the two-dimensional 
spacelike surface, was zero. This is the correct version of 
(B3) of Ref. 1 which was written down incorrectly in Ref. 1. 
Fortunately, all of the results in Ref. 1 due to (B3) were 
written down correctly in that paper. For a description of the 
quantities in (2.2) see Ref. lor (3.1) of this paper. 

The conclusion based on (2.2) is that one appears to 
have a contradiction. RP 2 is compact and the only compact 
two-surfaces with K = 0 are the torus and the Klein bottle. 
The problem is remedied by attaching another RP 2 associat
ed with the other sheet of space-time that is obtained by 
extension through the ring singularity. The connected sum 
RP 2#RP 2 is topologically the Klein bottle, resolving the par
adox. It should be noted that this discussion is just a sketch 
of what was done in the last section of Ref. 1 with many 
crucial details omitted. 

The extension of interest in this paper is the same one 
that is illustrated in Ref. 1. The second sheet of space-time is 
obtained from the first by the discrete isometry of the Kerr 
metric l/J - -l/J and t - - t. The two nonorientable RP 2 's 
are equivalent except that the geometric boundaries (RP 1) 
rotate in opposite senses and one of them goes backward in 
time. The interpretation that the first space-time is actually 
the same as the second will be made clear in this section. As 
indicated in Sec. III, this is also implied by the Stiefel-Whit
ney classes of the two-surface and its cobordism class. The 
Klein bottle at r = 0 turns space-time inside out upon itself. 

In order to understand how this happens, one can look 
at the extension of trajectories that strike the Klein bottle 
through this two-surface. Recalling that U2 is RP 2#RP 2 and 
that RP2 is the sphere, S2, with antipodal points identified, 
this is very straightforward. The first step is to decompose 
any tangent vector to a trajectory that strikes the two-surface 
into a component that lies in the tangent space of U2, T( U2 ), 

and a component in the normal space, N( U2 ). A parity 
transformation acts on the Boyer-Lindquist coordinates as 
follows: 

0-0 + 11', l/J-l/J, r- - r, t-t. (2.3) 
The quotient map that takes S 2 to RP 2 identifies the points 
on the sphere (0 + 11',l/J) - (O,l/J). Thus, one can conclude 
that the tangent vector to the trajectory emerges from the 
two-surface at the antipodal point to which it entered 
(which is actually the same point at which it entered by the 
quotient map in the previous sentence) with the same com
ponent in T( U2 ) that it had upon striking the surface and the 
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spacelike component in N( U2) reversed. For instance, the 
vector labeled kin as it reached the two-surface correspond
ing to an ingoing principal null geodesic iSJ' ust relabeled k out" 

an outgoing principal null geodesic, as it leaves the surface. 
In general, normal vectors that pass through the two-surface 
are just relabeled as they propagate back out towards asymp
totic infinity. Similarly, for the past directed trajectories that 
strike the other RP 2 as exemplified by the identification 
- kout ~ - kin, since under the discrete isometry 

kout -+ - kin and kin -+ - kout • 

This is equivalent to the fact that the Klein bottle is a one
sided surface in E 3; its "inside" and "outside" are the same 
space.5 

The existence of past directed geodesics that are on an 
equal footing with future directed geodesics leads to the 
question of causality of the space-time associated with this 
extension. Notice that the discussion in the previous para
graph implies that past directed trajectories remain past di
rected as they pass through the two-surface and similarly for 
future directed curves. Thus, an observer cannot see himself 
at earlier times after passing through the two-surface. But, 
what about observers that remain tangent to the two-surface 
and pass through the ring singularity? In principle, they 
could detect themselves at an earlier time on returning to the 
original sheet of space-time. In order to understand the pre
cise physical implications of this, one must say something 
about the manner in which the connected sum RP2#RP2 is 
constructed. The connected sum is accomplished by cutting 
out a region that is homeomorphic to a disk from each RP 2. 

This leaves two Mobius bands. Then the two Mobius bands 
are connected along the edges of these holes. Assume that 
the region that is cut out is an infinitesimal neighborhood of 
a portion of the ring singularity. It cannot contain the whole 
ring singularity for then it would not be homeomorphic to a 
disk. Then by (C2) and (C8) of Ref. 1, it would take a rocket 
capable of supplying a diverging value of acceleration to 
overcome the centrifugal force experienced by a timelike ob
server that attempts to remain tangent to the two-surface as 
the observer approaches the junction between the two sheets 
of space-time. Consequently, even though causality viola
tion is mathematically possible, it may be considered physi
cally to be highly unlikely. It should be noted that if the 
connected sum were in a region away from the equator, phy
sically reasonable observers could easily pass from sheet to 
sheet, making for a very acausal space-time. 

This extension seems to result in a physically reasonable 
space-time. The conclusion here is in contrast to that of 
Carter in studying the Boyer-Lindquist extension in Ref. 4. 
In that case the coordinate r is allowed to take on negative 
values and therefore so does the metric coefficient g",,,,. This 
enables observers to go backward in time by rotating about 
the symmetry axis for certain negative values of the coordi
nate r and then meet oneself at an earlier time by going back 
out towards asymptotic infinity at r-+ + 00. There is no such 
problem with the extension that is discussed here. Similarly, 
the timelike and null lines that are studied in Ref. 4 that lie in 
the equatorial plane and strike the singularity resulting in 
acausality in the Boyer-Lindquist extension just pass 
through and are relabeled in this extension due to the quo-
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tient space structure of U2 and its constituent RP 2 's as men
tioned previously. 

There is one more piece of information on the global 
geometry of the two-surface that can be obtained without an 
explicit construction of the connected sum. One can describe 
global geodesics as was done for the RP 2 's in Ref. 1. These 
same geodesics can be pieced together to form a global geo
desic on U2• As a guide as to how this should be done, one 
uses the fact that since K = 0 on the two-surface, there can 
be no conjugate points. However, there is a cut locus since U 

• 2 
can be defined as a quotIent space of the torus.5 

. The geodesics on the hypersurface containing RP 2 are 
gl ven by Eq. (2.1). Note that the discrete isometry acting on 
one of these geodesics creates another geodesic. Begin the 
~lobal geodesic on the future directed sheet near the equator 
l~ the form (2.1a) as drawn in Fig. 2. The spacelike projec
tIon of the geodesic integrates toward the north pole of the 
twisted sphere (see Figs. 1 and 2). Continuing through the 
pole, (2.1a) integrates down the "front" side of the "sphere" 
towards the equator. In the case ofRP 2 as discussed in Ref. 1, 
it w.ould rej~in back to its starting point on the equator, a 
conjugate pomt. However, the conjugate point was removed 
~h~n the connected ~um was performed. The spacelike pro
JectlOn of the geodeslc passes through the equatorial region 
and emerges on the past directed sheet of space-time in the 
form (2.1d). Recall that these are geodesics in the hypersur
face and not in the four-dimensional manifold. Thus, it 
would take a diverging value of acceleration for a physical 
observer to travel this same path. The spacelike component 
of the geodesic can be continued to the pole of the past direct
ed hemisphere in Fig. 2 and back to the equator as it did on 
the other sheet of space-time. The entire global geodesic is 
indicated in Fig. 2. However, Fig. 2 is intended to be merely a 
schematic as the Klein bottle cannot be embedded in E 3. The 
past directed sheet of the Klein bottle does not actually lie 
"below" the future directed sheet as is indicated in Fig. 2. 

In order to get a clear understanding of the geometry of 
the two-surface, one must describe in complete detail the 
structure of the connected sum of the two projective spaces 
in the equatorial region. As is the case of the model of RP 2 as 
a sphere. with antipodal points on the equator identified, the 
geometnc structure of the region where the two RP2 'sjoin 
determines many of the global properties of the two-surface 
atr= O. 

O~e item that must be considered when dealing with 
nononentable surfaces (such as RP2, the Mobius band, and 

Future directed sheet 
of spoce- time 

Past directed sheet 
of space- time 

FIG. 2. A global closed geodesic on the two-surface at r = O. 
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FIG. 3. A standard model ofRP 2 as a rectangle with identifications of the 
edges. 

the Klein bottle) is that if one translates a two-frame (i.e., 
parallel translates a basis of tangent vectors) along a closed 
curve the orientations of the two-frame can change upon 
returning to its starting point. Consequently, a preliminary 
discussion of the orientation bundle over the two-surface be
comes relevant. Although many properties are independent 
of the open covering of the base manifold, in this particular 
case there is a class of open coverings that bring out more 
details of the geometry. In order to construct an explicit 
representative of this class of open coverings, one must first 
go back to a detailed study of the various models of lRP 2. 

lRP 2 cannot be embedded in Euclidean three-space, E 3. 

Thus, one must resort to models in three-space that are topo
logically equivalent to RP 2. Since this paper is not concerned 
so much with the space lRP 2 in general but for a particular 
space that is topologically equivalent to lRP 2

, it is best to 
think of these models as parameter spaces that can be 
mapped 1 to 1 to the actual surface under consideration. 

The first model to be introduced is the square with oppo
site sides identified as pictured in Fig. 3. For further details 
of this model and the ones to follow see Refs. 5 and 6. As is 
standard in topological models, the arrows define which 
edges should be identified. Parallel arrows imply that the 
two sides can be simply glued together. Antiparallel arrows 
imply that one side is to be flipped over before being glued to 
the opposite side (see Figs. 3-6). One can also define lRP 2 as 
a disk with antipodal points on the boundary identified. A 
similar model that will be used is the hemisphere with an
tipodal points on the equator identified (a cross cap). There 
are other models for RP 2 but these are adequate for the pur
poses of this paper. The topologist's technique of going from 

FIG. 4. A model of the Mobius band that is based on Fig. 3. 
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FIG. 5. A model of the Mobius band. 

one model to another depending on the property of the sur
face under investigation will be used in the following. 

In constructing the connected sum, a region homeomor
phic to a disk is removed from each RP 2 in a neighborhood of 
the equator. It turns out that an interesting model for U2 is 
one in which most of the equator has been removed from 
each of the constituent RP 2 's. This is the Klein bottle of 
interest in this paper and the result of this excision on one of 
the RP 2 's is illustrated for the various models of lRP 2 in 
Figs. 4-6. 

All of the identifications that are indicated by the ar
rows in Figs. 4-6 are manifested in an infinitesimal neigh
borhood of the equator that was not removed when the hole 
was cut in lRP 2. This infinitesimal neighborhood is like a 
"bridge" that connects the left edge (with a halftwist) to the 
right edge in Figs. 4-6. For this reason, it will sometimes be 
referred to in the following as the bridge. This bridge is great
ly exaggerated in these illustrations for the sake of added 
definition. It is actually of infinitesimal extent. In some of the 
following illustrations it will be exaggerated even more so 
that additional details can be drawn. 

It is easy to see from Figs. 4-6 and the discussion of the 
bridge in the previous paragraph that the space resulting 
from excising the hole from RP 2 is topologically a Mobius 
band. Since it is only the resulting Mobius bands that are 
used in the construction of U2 , the orientation bundle will be 
described for these with a particular emphasis on an illumi-

- - ----

FIG. 6. A model of the Mobius band. 
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I I 
FIG. 7. A standard model of the Mobius band as a rectangle with two of the 
sides identified. 

nating open cover. Preliminary to this, observe how the Mo
bius bands are joined to form U2• A model for the Mobius 
band is given by Fig. 7. Combining two of these and attach
ing along the edges one has a standard model for the Klein 
bottle (Fig. 8). 

Define two open sets on the future directed Mobius 
band that is obtained from the future directed RP 2 by remov
ing a set that is homeomorphic to a disk. The first set, VI' can 
be defined in terms of the models in Figs. 5 and 6 as the 
unshaded area in Fig. 9. Notice that there is a segment that is 
removed (half of a meridian). Define another open set, V3 , 

as the unshaded region of Fig. 10. Note that there is no seg
ment removed from V3 and VI U V3 is the future directed 
Mobius band. 

The intersection of VI and V3 contains two disjoint open 
sets labeled (VI n V3) I and (VI n V3) 2 that are denoted by 
the unshaded regions in Figs. 11 and 12, respectively. The 
missing meridian is an unusual construction in the open cov
ering of the Mobius band. The motivation for removing the 
meridian will be elucidated when the structure near the 
equator has been studied in detail. 

The orientation bundle over the Mobius band can now 
be defined as a line bundle in the standard construction as in 
Ref. 7. One can orient each one of the open sets VI and V3 
separately. For instance, the coordinate transformation 
from the tangent space at a point of VI to the tangent space at 
another point of VI can be chosen to have positive determi
nant for each pair of points in VI' The same statement can be 
made for pairs of points in V3• The line that is a fiber over the 
Mobius band can be described by a + 1 or - I (line points 
"up" or "down") depending upon whether the determinant 
of the transformation from some base point is positive or 
negative. One can trivialize this line bundle on VI and on V3 

FIG. 8. A standard model of the Klein bottle as a rectangle with the sides 
identified. This model is obtained by gluing two of the Mobius bands in Fig. 
7 along the edges. 
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FIG. 9. The open set V" and element of the open covering of the future 
directed Mobius band, is represented by the unshaded region of these two 
different models of the Mobius band. 

separately. For a good discussion of the orientation line bun
dle see Bott and Tu.7 However, one finds that on the overlap 
of the two open sets, the trivialization over VI cannot agree 
with that over V3 on both components of the overlap. This is 
best described by the transition functions of the line bundle. 
For any covering of the Mobius band by two open sets, 
Steenrod shows that the transition functions are gl1 = g22 
= g21 = g 12 = 1 on one component of the intersection and 

gl1 =g22 = -g21 = -g12 = 1 on the other component.8 

See Ref. 8 for definitions and discussion of transition func
tions. In this paper one chooses 

gl1 =g33 =g31 =g13 = 1 for (Vl nV3 )1, (2.4a) 

gl1 =g33 = -g31 = -g13 = 1 for (Vln V3h· 
(2.4b) 

The trivialization over VI can be arbitrarily associated with a 
" + 1" and the trivialization over V3 is therefore associated 
with a " - 1" on the region of intersection, (VI n V3) 2' This 
is a useful way of conceptualizing the orientation bundle on 
this set. It allows for the interpretation of VI as the positive 
orientation sheet of ( VI n V3) 2 and V3 represents the nega
tive orientation sheet. Since these sheets are only subsets of 
VI and V3, one introduces a new notation to describe these 
subsets. The positive and negative orientation sheets of 
(VI n V3)2 will be denoted as regions I and III, respectively. 

One can similarly cover the past directed Mobius band 
by the two open sets V2 and V4• The transition functions for 
the orientation bundle are the same as (2.4) with the appro
priate relabeling of indices. V2 is chosen to represent the 
positive orientation sheet on the hemisphere minus a merid
ian and the equator, (V2n V4 )2 (see Fig. 12), which is the 
past directed analog of ( VI n V3 ) 2' Here V4 is defined analo
gous to the definition for V3• One can continue the analogy to 
the future directed sheet by making the corresponding defi-

FIG. 10. The open set V3, an element of the open coverings of the future 
directed Mobius band, is represented by the unshaded region of these two 
different models of the Mobius band. 
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FIG. 1l. The open set (Vi n V3 ) I' one of the disjoint components of the 
intersection of VI and V3 , is indicated by the unshaded region of these two 
different models for the future directed Mobius band. 

nitions for regions II and IV as positive and negative orienta
tion sheets, respectively. 

After making the connected sum, one infinitesimally en
larges the open sets Vi to be larger sets Wi' such that Vi C Wi 
and U i W; = U2• Then one can find the transition functions 
of the orientation bundle for this covering of U2 by four open 
sets. As an explicit example, WI n W2 is an open set with one 
connected component as drawn in Fig. 13. 

Figure 13 is just a schematic in a sense. It is homeomor
phic to the actual intersection and it is based on the schemat
ic diagram ofRP 2 in Fig. 6. The equator represents where the 
two sheets are joined in the connected sum. "Above" the 
equator is the future directed sheet and "below" the equator 
is the past directed sheet. It is at this point that one realizes 
that the diagrams can be more confusing than helpful when 
the second sheet of space-time is attached. The figures no 
longer speak for themselves and must be supplemented with 
words to clarify their meaning. One sheet is not really above 
the other. 

The transition functions on the overlap of the trivializa
tions of the orientation bundles on WI and W2 are chosen to 
be 

gll =g22 =g12 =g21 = 1. (2.5a) 

Notethatgl2 = g21 could have been chosen to equal - 1, but 
the choice of + 1 simplifies the notation. The other choice 
will be revealed in Sec. III to be representative of an inequi
valent bundle structure. Once this choice is made, the transi
tion functions on the other intersections are fixed. On 
W3n W4 the intersection has one component with transition 
functions 

g33 =g44 =g34 =g43 = 1. (2.5b) 

As before, WI n W3 is a set with two components. On 

FIG. 12. The open set (VI n V3 }z, one of the disjoint components of the 
intersection of VI and V3, is indicated by the unshaded region of these two 
different models for the future directed Mobius band. 
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FIG. 13. The intersection of UI and U2• Note the holes in the main cylindri
cal region on the far left and the far right. There is an adjoining ftap on the 
left side that connects along part of the edge of one of these holes. A portion 
of this appendage intersects the ring singularity. 

( WI n W3 ) I (see Fig. 11) one has the transition functions 
[see (2.4a)] 

gll =g33 =g13 =g31 = 1. (2.5c) 

Similarly, on (WI n W3 h (see Fig. 12) one has [see (2.4b)] 

gll=g33= -gI3= -g31=1. (2.5c') 

The remaining transition functions are compiled below. On 

(WIn W4)tr gll = g44 =g41 =g14 = 1, 
(2.5d) 

(W1nW4)2' gll=g44= -g41= -gI4= 1, 

(W2nW4)1' g22=g44=g42=g24 = 1, 

(W2nW3)!, g22 =g33 =g23 =g32 = 1, 

(w2 n W3)2' g22 = g33 = - g23 = - g32 = 1. 

(2.5e) 

(2.50 

One can construct a model for U2 along the lines of Fig. 
6 as a surface consisting of two concentric hemispherical 
shells that are joined along the equator with a handle con
nected to the equatorial region. This is depicted in Fig. 14. 
As with the bridge of the Mobius band in Figs. 4-6, the 
handle is very much exaggerated. It actually has an infinites
imal diameter and is infinitesimally long. 

One can associate the inner hemisphere of Fig. 14 with 
the past directed sheet and the outer hemisphere with the 
future directed sheet of space-time. As drawn, the surface is 
topologically a torus (a sphere with one handle). However, 

FIG. 14. A model of the Klein bottle. Note that the handle has been greatly 
exaggerated. 
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if in the middle of the circular tube that forms the handle, 
where there is a heavy line signifying a junction in Fig. 14, 
the circular cross section is reflected through a diameter as it 
passes through the junction, then the surface is topologically 
a Klein bottle.8 Figure 14 is a little deceiving in that the 
neighborhood of the equatorial junction of the two hemi
spheres is not topologically a cylinder. A major portion of 
the remainder of this section is an investigation of this re
gion. 

This construction is useful as one can associate the set 
WI U W2 with the positive orientation sheet of the two hemi
spheres that comprise part of the Klein bottle as pictured in 
Fig. 14 (remember that a meridian has been removed from 
each hemisphere) as was done for the orientation sheets on 
the corresponding subsets of the two constituent RP 2 's. Sim
ilarly, W3 U W4 correspond to the negative orientation sheet 
of the two hemispheres. Normally, only two open sets would 
be necessary to cover the Klein bottle in order to make such a 
construction for the orientation bundle.8 Four sets have been 
chosen here so that it is possible to keep track of whether a 
trajectory is on the past or future directed sheet of space-time 
as well as the positive or negative orientation sheet. 

The motivation for drawing the Klein bottle as in Fig. 14 
is twofold. Ultimately, the Klein bottle will be associated 
with the null sphere at infinity by means of a set of normal 
vectors to U2 , the principal null congruences. Second, it was 
found in Ref. 1 that the spacelike two-surface at r = 0 is just 
like a sphere as viewed by observers that are stationary with 
respect to asymptotic infinity, except that the rotation of the 
equator at the speed of light gives the equatorial region a 
complicated twisted and knotted structure. It is what goes 
on at the equator that changes the topology of the entire two
surface. This was also the motivation for choosing the open 
sets as was done in Figs. 9 and to. The goal was to make the 
component of the intersection that is depicted in Fig. 12 look 
as much like a hemisphere as is possible. To understand why 
a meridian was removed from WI and W2, one must study 
the equatorial region of Fig. 14 where the connected sum is 
formed in detail. 

Finally, one has enough constructions and tools to actu
ally study how the connected sum is formed. Again, one 
must go back to the original models ofRP 2. The boundary of 
RP 2 (the equator of the twisted sphere) is topologically lRP 1. 

This can most easily be seen from the model oflRP 2 that was 
used to draw Fig. 5. An open neighborhood of the equatorial 
singularity is therefore homeomorphic to the canonical open 
line bundle over RP 1 (i.e., line bundle minus the boundary) 
as defined in Ref. 9. This neighborhood is topologically a 
Mobius band. To make the connected sum of interest a re
gion that is homeomorphic to a disk is removed from this 
neighborhood that contains all of the equator except for an 
infinitesimal region. What remains of the Mobius band is 
pictured in Fig. 15. 

The connected sum is formed by attaching two of these 
regions that are depicted in Fig. 15 along the boundary of the 
excised region. It should be noted that since the central circle 
of the Mobius band is lRP 1, it only takes a parameter value of 
t/J = 1T' radians to complete the circular path. Due to the diffi
culty of drawing both of the Mobius bands with holes in 
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FIG. 1 S. A Mobius band with a long slit excised. The excision removes most 
of the center circle. 

them complete with their connection along the boundary of 
the excised holes, a schematic that represents this join is 
drawn in Fig. 16. 

It should be noted that in Fig. 16 when the left end is 
rejoined to the right end (the Mobius band had to be severed 
so that it was possible to draw the junction between the two 
sheets of space-time in a coherent manner) of each Mobius 
band that there must be a half twist to get the actual Mobius 
band structure that arises from the canonical line bundle 
over RP 1. There is an added complication in joining the left
hand side to the right-hand side of Fig. 16 that cannot be 
deduced at this point. It will be shown in the discussion of 
Fig. 17 that the junction between the left- and right-hand 
sides of Fig. 16 actually involves the right-hand side of the 
neighborhood of the future directed RP 1 be attached to the 
left-hand side of the neighborhood of the past directed lRP 1 

and vice versa. This is related to the quadratic branch point 
nature of the ring singularity. 11 There will be more said 
about this in the discussion that follows Fig. 17 from which 
this is much easier to see. 

The advantage of drawing Fig. 16 is that the critical 
point structure of the manifold is readily revealed. These 
critical points are circled in Fig. 16. It appears that if one 
traces a path along where the connected sum is made, one 
need not specify which sheet of space-time it is on. However, 

FIG. 16. The connected sum of the two sheets of space-time is made along 
the edge of the rectangular hole. There is an identification of points on the 
left edge with points on the right edge. The small circles indicate the loca
tion of the two critical points. 
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if one is moving from left to right there is a problem at the 
right end. If one continues to move azimuthally, there is a 
splitting of the manifold into the two sheets of space-time in 
the regions of the original Mobius bands that were not re
moved when the connected sum was formed. These regions 
are part of the handle of the Klein bottle in Fig. 14. It should 
be remembered that the whole equatorial region cannot be 
removed when the connected sum is formed as this region is 
not homeomorphic to a disk (the topology of such a region 
was described in the discussion leading to Fig. 15). At the 
right end, the path has a choice as to which sheet of space
time it will emerge on. In order to understand this situation, 
one can refer to the classic work of Whitney. 10 A critical 
point at which two Mobius bands intersect is classified as 
type 1 ..... 1. There is another critical point where the path 
exits the bridge region on the left-hand side of Fig. 16. It is of 
type 1 ..... 1 as well. There are two critical points that are very 
close together in this construction. Whitney shows in Ref. 10 
that two type 1 ..... 1 critical points on a manifold is consistent 
with that manifold having a vanishing Euler characteristic, 
X. The Klein bottle has X = o. 

Before trying to draw the structure of the manifold in 
the vicinity of the critical points, there is one more detail that 
should be noted. Kerr and Schild in Ref. 11 found that the 
ring singularity was essentially a quadratic branch point 
between two sheets of space-time. Even though most of the 
ring singularity has been removed in forming the connected 
sum, not all of it can be removed. Thus, the manifold still has 
structure that is dictated by the nature of the ring singular
ity. If you circle around the singularity once you pass onto 
another sheet of space-time and if you circle around again 
you come back to the original sheet of space-time that you 
started on. 12 Adding this into the structure of the connected 
sum, one can draw the critical point structure as in Fig. 17. 

A few things should be noted about the schematic na
ture of the diagram. Most obviously, the Mobius bands have 
been disconnected along the region where the connected 
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FIG. 17. The equatorial region of the 
two-surface at r = O. Note that the re
gion has been sliced open along the join 
of the connected sum. The location of 
the critical points are indicated by the 
small circles. 

sum is made to make a drawing possible. The big loop of the 
Mobius band on the left can be associated with the past di
rected Mobius band and the big loop on the right-hand side 
of Fig. 17 with the future directed Mobius band. In actuality, 
the two Mobius bands are wrapped around each other. How
ever, if this were drawn one would not see the critical point 
structure. There are four critical points indicated in the 
drawing. However, due to the identification of points along 
the boundary of the hole where the connected sum is formed, 
there are really two critical points that are counted twice. 
The holes in the Mobius bands are designated by a series of 
parallel lines that mark off the evacuated areas of the holes. 
Where the holes meet the edge of the bridge there is drawn a 
very heavy line. The ring singularity is drawn as a dashed 
line even though the region that was evacuated by the holes. 
It appears as a center circle for the Mobius bands in the 
holes. The quadratic branch point structure is implicit in the 
fact that as one traces out the ring singularity, it is on the past 
directed sheet for one revolution and it is on the future di
rected sheet on the next revolution and so on. Also indicated 
on the drawing is a directional curve that traces out azi
muthal curves along which the connected sum is made. Since 
these azimuthal curves trace out four disjoint arcs in Fig. 17 
(in actuality there are only two arcs when the two Mobius 
bands are glued together) one can join them through the 
bridge by a unique continuous path that is indicated by a 
directional dotted line in the bridge region. This is the unique 
curve that is consistent with both the quadratic branch point 
structure of the singularity as well as the structure of the 
connected sum. This is the solution to the ambiguity of the 
critical point structure of Fig. 16, where it was not clear 
which sheet of space-time an azimuthal curve was on when it 
reached the bridge. It should also be noted that it takes a 
rotation of ¢ = 7r radians (due to the structure of RP 1) to 
circle one of the big loops and come back to the two critical 
points. 

In order to analyze Fig. 17, one must refer back to the 
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structure of the canonical open line bundle over RP I in one 
of the constituent RP 2 's, for the sake of argument say the 
future directed RP 2. This is topologically a Mobius band that 
has a boundary that can be thought of as a double covering of 
the central circle. In this case, the central circle is RP I. 
Therefore, the boundary is S I corresponding to a parameter 
value of <P = 21T'to complete a tracing of this circle. The Mo
bius band is not orientable. If one were to transport a tangent 
frame along the bounding S I, one could say that on the first 
half of the circle one is on the positive orientation sheet of the 
hemisphere minus a meridian, (VI n V3 ) 2' in the model of 
RP 2 corresponding to region I. On the second half of the 
circle it is in region III. It returns to region I after completing 
a rotation of <P = 21T' radians. See the discussion on the line 
bundle over the Mobius band in the next section for the bun
dle structure of this construction. These regions were de
fined in the discussion of the orientation bundle earlier in 
this section. Similarly, for the past directed sheet, the bound
ing circle to the open line bundle over RP I passes through 
regions II and IV. 

From this discussion, one can analyze Fig. 17. As indi
cated previously, the curve that contains the four azimuthal 
arcs along which the connected sum is made, is clearly indi
cated in Fig. 17. As noted earlier there are actually only two 
arcs counted twice. However, if the curve is associated with 
the sheet of space-time it was on as it left the bridge region, 
the two arcs are double covered by the two sheets of space
time and stating that there are actually four arcs becomes 
well-defined. The curve that contains these four arcs is topo
logically a circle that is a double covering of S I. It takes a 
parameter value of <P = 41T' radians to complete the circle. 
Based on the previous paragraph, it passes through the var
ious regions of space-time at r = 0 that have been defined in 
this section. The trajectory of this curve through these re
gions is tabulated in Table I as a function of the parameter <p. 

The structure of the equatorial region fixes the global 
geometry of the spacelike two-surface at r = 0 just as the 
structure of the equator in the model ofRP 2 as a sphere with 
antipodal points on the equator identified fixes the geometry 
of the entire surface. This is due to the fact that the two 
circles that form the two equators of the hemispheres in the 
model of U2 in Fig. 14 are subsets of the circle of 41T' radians 
that contains the four disjoint azimuthal arcs of the connect
ed sum that is drawn in Fig. 17. 

Similarly, for this same curve near the equator at 

TABLE I. The structure of the curve that contains the four azimuthal arcs 
along which the connected sum is formed as a function of the parameter t/J 
for () = !1T. 

Region Azimuthal 
of surface Sheet of Spatial angular 
atr=O space-time orientation displacement 

I 1>0 positive 0<t/J<1T 
II 1<0 positive 1T<t/J<2rr 
III 1>0 negative 21T<t/J<31T 
IV 1<0 negative 31T<t/J<41T 
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TABLE II. The structure of the curve that contains the four azimuthal arcs 
along which the connected sum is formed as a function of the parameter t/J 
for () = 31T/2. 

() = 31T/2 

Region Azimuthal 
of surface Sheet of Spatial angular 
atr=O space-time orientation displacement 

II 1<0 positive 0<t/J<1T 
III 1>0 negative 1T<t/J<21T 
IV 1<0 negative 21T<t/J<31T 
I 1>0 positive 31T<t/J<41T 

() = 31T' /2 (which is distinct from the curve near the equator 
at () = !1T' as implied by the remarks at the end of the previous 
paragraph), one has the same circle as in Table I rotated by 1T' 
radians. This must be since at () = 31T'/2 the circle must pass 
through the various regions of the two-surface in the same 
order as it did for () = ~1T'. Furthermore, due to the branch 
point nature of the singularity, if at () = !1T' a portion of the 
equator is on the future directed sheet of space-time, say 
region I, then after a rotation of 1T' radians to () = 31T' /2 this 
equatorial arc must pass onto the other sheet of space-time, 
say region II. This is consistent with the fact that each time a 
trajectory passes through the singularity it must change 
sheets of space-time. The arbitrary choice of region II as 
opposed to region IV is discussed in Sec. III. The alternate 
choice corresponds to an inequivalent tangent bundle for the 
two-surface at r = O. The curve at () = 31T'/2 is described in 
Table II. 

One can construct similar tables for () = 51T/2 in Table 
III and for () = 71T/2 in Table IV. The actual motivation for 
constructing the tables as they are can only be made clear 
after Fig. 19 is analyzed. The results of Tables I-IV can be 
combined in the lattice structure that is drawn in Fig. 18. 

Figure 18 contains a complete coordinate description of 
the curve that contains the four azimuthal arcs of the con
nected sum. Thus, Fig. 18 determines the global geometry of 
the spacelike two-surface at r = O. Each time a trajectory 
crosses the equator it changes sheets of space-time by the 
quadratic branch point property of the ring singularity. 
Thus, a portion of the curve that contains the four azimuthal 
arcs of the connected sum that lies in region I can only bound 
region I itself or the past directed regions II and IV. Similar-

TABLE III. The structure of the curve that contains the four azimuthal 
arcs along which the connected sum is formed as a function of the parameter 
t/J for () = 51T/2. 

() = 51T/2 

Region Azimuthal 
of surface Sheet of Spatial angular 
atr=O space-time orientation displacement 

III 1>0 negative O<t/J<rr 
IV 1<0 negative 1T<t/J<21T 
I 1>0 positive 21T<t/J<31T 
II kO positive 31T<t/J<41T 
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TABLE IV. The structure of the curve that contains the four azimuthal arcs 
along which the connected sum is formed as a function of the parameter r/J 
for 71T/2. 

(} = 71T/2 

Region Azimuthal 
of surface Sheet of Spatial angular 
at r=O space-time orientation displacement 

IV 1<0 negative 0<'r/J<'1T 
I 1>0 positive 1T<.r/J<.21T 
II 1<0 positive 21T<.r/J<.31T 
III 1>0 negative 31T<'r/J<.41T 

ly, the portion of this equatorial curve that lies in region II 
can only border regions I, II, or III and so on. Thus, one can 
fill in the squares in Fig. 18 to give the unique region that is 
bounded by this equatorial curve for different ranges of val
ues of the parameters () and 4> as is done in Fig. 19. 

The motivation for choosing Table I distinct from Table 
III and Table II distinct from Table IV can be made clear. 
For instance if this equatorial curve at () = 31T/2 was the 
same as for () = -!1T = 71T/2, then one could not place a 
region II between the equatorial curve at () = ~1T and the 
equatorial curve at () = 31T/2. It would have to be region I 
again. This would contradict the fact that the curve changes 
sheets upon crossing the equator. 

Before interpreting Fig. 19, it is probably best to digress 
briefly in order to expand out what is really meant by the 
chart. Each one of the 1T X 1T squares represents part of the 
Mobius band that is drawn in Fig. 4. The bridge region has 
been severed as indicated in Fig. 20. 

Figure 19 is a convenient abbreviation for the more de
tailed expanded chart that is given in Fig. 21. The difference 
between Figs. 19 and 21 is that the infinitesimal regions that 
form the handle of the Klein bottle have been cut off in Fig. 
19. The motivation for this is merely the infinitesimal extent 
of the handle. Before dismissing the handle, it is appropriate 

4r I ~ I I I 
~ .... 1=1 ~ 

I I I I I 3r 

I=t a ~ .... 1=1 

I I I I I 2lf 

.... 1=1 ~ ~ H 

l I 1 i I r 

.... ~ 
0 I I I I I 

-r/2 r/2 3r/2 5r/2 7r12 

8 

FIG. 18. This lattice structure gives a coordinate description of the equator-
ial curve that contains the four azimuthal arcs along which the connected 
sum is formed. 
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8 

FIG. 19. The global geometry of the two-surface at r = 0 that is dictated by 
Fig. 18. 

-
Mobius Bond .". X If squore 

FIG. 20. A mapping ofa Mobius band to one of the squares in Fig. 19. 
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FIG. 21. An expanded version of Fig. 19. 
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:I_--.--__ II 

8 = 7r/2+E 

FIG. 22. The mouths of the handle of the Klein bottle. 

to give a complete description of this in terms of the constitu
ent bridges. By observing Figs. 17 and 21, one can deduce 
that at the mouth of the handle (i.e., where the handle con
nects to the hemispheres in Fig. 14) all four regions of the 
two-surface are used to cover the cross-sectional curve. This 
is illustrated in Fig. 22 as the cross section at 0 = !17" - E, 

where E is considered to be a small positive number. The 
topology of the Klein bottle results from reflecting this cross 
section through a diameter before the handle reaches 
o = !17" + E in Fig. 22. The only diameter that can be chosen 
for this reflection that is consistent with the nonorientability 
of the Klein bottle is the diameter that is parallel to the azi
muthal direction that is generated by the vector field ala¢>. 
This construction is consistent with the mandatory changing 
of sheets of space-time when crossing the ring singularity as 
dictated by the quadratic branch point structure. In Fig. 17 
the handle would be manifested as a tubular loop which in
cludes the aforementioned reflection that is connected to the 
rest of the manifold in the region between the critical points. 

In Fig. 21 it is implicit that the adjacent parallel boun
daries without arrows should all be connected. They were 
not so that the contributions to the handle could be drawn. 

Figures 19 and 21 have some interesting global implica
tions for the 2-D spacelike surface at r = O. It is instructive to 
assume that one of the hemispherical shells in Fig. 14 lies on 
a single orientation sheet (i.e., the region admits a trivial line 
bundle) so that it is all of the orientation type of region I. The 
Kerr metric and therefore its restriction to the two-surface is 
independent of ¢>. One concludes that under an azimuthal 
rotation the surface is mapped into itself. The left-hand col
umn of Fig. 19 implies that a rotation about the symmetry 
axis maps region I into region III continuously in a rotation 
of ¢> = 217" radians. The hemispheres in Fig. 14 are rotated 
from the positive orientation sheet to the negative orienta
tion sheet. This is a totally unexpected behavior of the two-
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surface that results from the structure of the equatorial re
gion. The other columns of Fig. 19 give a similar result for 
the other regions that cover portions of U2• It is this change 
in orientation that results from azimuthal rotation that moti
vated the construction of the open sets WI and W2 with a 
meridian removed. This is the behavior of each of the four 
regions that is dictated by the columns of Fig. 19. A rotation 
azimuthally of 217" radians changes the orientation of the re
gion and a rotation of 417" radians returns the region to its 
original orientation. Note that azimuthal rotation does not 
translate a particular region into the other sheet of space
time (i.e., it preserves the local direction of time). This is 
consistent with the discussion at the beginning of this section 
on causality. 

The rows of Fig. 19 have a different interpretation. The 
surface is not mapped into itself under a change in the coor
dinate O. Otherwise, combined with the azimuthal symme
try, one would have spherical symmetry (which is clearly 
not manifest). The rows can be interpreted as describing 
what happens when a tangent two-frame is translated along 
a curve with a lao as a tangent vector. Every 17" radians the 
tangent two-frame passes from one sheet of space-time to the 
other as required by the quadratic branch point structure of 
the ring singularity. Unexpectedly, after a translation along 
the curve for a parameter value corresponding to 217" radians 
when the two-frame reemerges onto its original sheet of 
space-time, it has its spatial orientation reversed. Again, this 
results from the structure of the equatorial region through 
which the translation described above keeps passing 
through. 

It is very important to note that the columns do not 
imply that if a tangent two-frame is translated along an azi
muthal curve that it will change orientation sheets. The col
umns arise as a result of a rigid rotation of both a particular 
region and the equatorial curve that is attached to it. If the 
equator does not rotate, then azimuthal translation alone 
does not allow the two-frame to leave its original orientation 
sheet. 

Since the Klein bottle cannot be embedded in E 3, Figs. 
17, 19,21, and 22 when combined with Fig. 14 are probably 
the most concise drawings that can be made that contain all 
of the geometric information of this particular Klein bottle. 
In them, it is claimed that all of the geometry of the two
surface can be ascertained. 

III. THE NORMAL BUNDLE 

To understand the details of the immersion of the Klein 
bottle in the Kerr manifold, one can study the normal bundle 
over U2• This is a two-plane bundle with fibers that can be 
coordinated by the Boyer-Linquist coordinates rand t. Be
sides elucidating whether one has an immersion or an em
bedding, one is also interested in how many vector or line 
sections can be found. The two problems are somewhat relat
ed. This study will be conducted through the use of charac
teristic classes and obstruction cocycles. It is through these 
concepts that one can analyze what happens as a principal 
null geodesic is translated around the two-surface. 

The first thing that one should look at is the top obstruc
tion cocycle, the Euler number of the normal bundle [de-
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noted by X(N)]. In Ref. 1, X(N) was evaluated in (B5). 
However, this mayor may not be correct as there is an ambi
guity in the defining relation. In the following, a more de
tailed account of how this result was calculated is given 
along with a discussion of where the ambiguity arises. After 
this elaboration, one does the next best thing. A calculation 
is performed that is more indirect in order to obtain a similar 
result. This author was only able to verify a weaker though 
unambiguous statement about the normal bundle by means 
of an alternative construction to that of (B5). In Ref. 1 it was 
"found" that X(N) = O. In the alternative treatment to be 
discussed in the following, it will be shown that, to say the 
least,x(N) mod 2 = O. 

The result in Ref. 1 was based on the equation of struc
ture for submanifolds 

dw't = N dA = w'a /\wa
t + R't' (3.1) 

where the Wi j are the connection one-forms and R' t is the 
curvature two-form of the Kerr manifold. The quantity 
dA = I wlJ /\ w¢> I is the area element of the submanifold and 
N is the normal curvature. In Ref. 1 these quantities are 
calculated in the zero angular momentum frames. After 
solving the structure equations in this frame and restricting 
the results to the hypersurface at r = 0, one has on the future 
directed sheet of space-time: 

dw't = - (m/a3 )sec5 0(2 + sin2 O)dA = R 't. (3.2a) 

By the first equation of structure W't -+ - w', under the 
discrete isometry t -+ - t and ¢ -+ - ¢ since the basis covec
tors defined in Ref. 1 transform as wt 

-+ - w' and w' -+ w' 
under the discrete isometry. Thus, on the past directed sheet 
of space-time one has 

(3.2b) 

In (B5), the Euler characteristic is computed by a 
Gauss-Bonnet-type integral, 

X(N) = L dw't = L NdA =0. (3.3 ) 

The first problem with this formalism is that if the Kerr 
manifold is orientable, the normal fiber cannot be oriented 
over U2 since the base manifold is nonorientable. There is no 
Gauss-Bonnet theorem for nonorientable surfaces or fibers. 
Even though there is no theorem that is proved or stated in 
the mathematical literature, an extension of the Gauss-Bon
net theorem to the nonorientable case with two-dimensional 
fibers is known among a community of mathematicians. 13 

The reason for the extension of the theorem in the two-di
mensional case is straightforward. One can define an area on 
a nonorientable surface by dividing the surface into sim
plices and adding up the areas of the constituent simplices. 
In the two-dimensional case, the Euler class is dw' t' which is 
just a function (the curvature) times the area on each sim
plex (see Milnor and StashefI9 for a discussion of the Euler 
class). Thus, one does not have to worry about densities or 
orientations. One just adds up the contributions from each 
simplex. Clearly, if the simplicial structure is made fine 
enough this can be incorporated into the Riemannian defini
tion of the integral of this curvature function. The integral 
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over the whole surface can be thought of as a sum of numbers 
times infinitesimal area elements. This simplicial method is 
essentially the way that Whitney originally defined the nor
mal Euler number in Ref. 10 (in his notation the normal 
Euler number is W 2

• M) for any two-manifold immersed in a 
four-dimensional space. Since the Euler class is more com
plicated in higher dimensions, it is not at all clear if this 
argument can be extended to the higher-dimensional case. 

Applying this result to (3.3), the result follows directly 
from (3.2). Since each of the Mobius bands in the connected 
sum are identical with the same areas and the normal curva
tures are identical except for the sign, the integral in (3.3) 
must vanish identically. However, there is an ambiguity. The 
normal curvatures diverge at the ring singularity. On one 
side, the normal curvature approaches to + 00 and on the 
other side - 00. When the connected sum is formed, the 
region where the normal curvature is infinite is removed ex
cept for an infinitesimal set. Where the singularity has not 
been removed, one is integrating infinite quantities and there 
can be some ambiguity as to what the integral means, even 
though there is an identical cancellation of the divergences 
since there is an equally negative divergent contribution on 
the future directed sheet of space-time to cancel the positive 
divergence on the past directed sheet by (3.2a) and (3.2b). 

The fact that this infinitesimal set cannot vanish and 
maintain the global topology of the two-surface, one has to 
be wary of any limiting process that tries to sweep this prob
lem under the rug. As this is a crucial result that is just a 
starting point for the following analysis, one needs a state
ment with a stronger foundation even though (3.3) mayac
tually be correct. 

Fortunately, one can get information on the Euler num
ber without resorting to (3.3). For the purposes of this pa
per, this alternate treatment will reveal all of the information 
that is needed in the following. It is shown in the Appendix 
that the existence of a normal line section is equivalent to the 
fact that X(N) mod 2 = O. There are more direct ways of 
obtaining this result that rely on the Whitney product 
theorem (3.11).14 However, the treatment in the Appendix 
involves a Gauss-Bonnet-type theorem for nonorientable 
surfaces. A surface integral of a density (an element of twist
ed cohomology) mod 2 gives the Euler number mod 2. As 
there is no discussion of such a theorem in the mathematical 
literature that this author could find, it is presented in the 
Appendix. 15 Furthermore, this kind of theorem seems easily 
extendible to higher dimensions, while the previous discus
sion of the Gauss-Bonnet theorem for two-dimensional non
orientable fibers that involved simplices may not be. 

In the spirit of the Appendix, one simply proceeds to 
prove the existence of a trivial normal line bundle. This bun
dle is physically significant as it allows one to find a constant 
time cross section that contains both sheets of space-time. 
One can find a line bundle on each sheet of space-time in a 
straightforward manner everywhere except at the ring sin
gularity. Since there is a pseudo-Riemannian metric on the 
manifolds (the two sheets of space-time at r = 0), gpl' (x), 
there exists a splitting. 16 One can put a Riemannian metric 
on the same manifold, gpl' (x). The splitting is defined by the 
eigenvalue equations 
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'T"'g",V(x)rV = ( - l)'T"'g",v(x)rV
, ( 3.4a) 

A tg",v (x)A. r = ( + l)A tg",v (x)A r, 
i = 1,2,3 with no sum over i, (3.4b) 

and r; 'A; = 0, Vi. 
The solutions to (3.4a) fonn a line bundle. Here rV is 

the timelike component of the orthogonal tetrad completed 
by theA; 'So Both ± rV are solutions to (3.4a). Thus, one has 
a vector section defined by (3.4a) up to a sign. This is a line 
section. For example, rV might be the vector field a I at. The 
problem with perfonning such a splitting at the ring singu
larity at () = '!T12 and r = 0 is that the metric coefficient gtt 
becomes singular and positive, 

()= (112)11" 

(3.5) 

A limit is not used in (3.5) as it reaches this value discontin
uously for fixed r. Some of the other metric coefficients be
come either zero or infinite at the ring singularity. The met
ric does not even retain its signature of (3,1) at the 
singularity. There is no splitting here. 

In order to deal with this pathology, notice that there is 
a splitting above and below a neighborhood of the equatorial 
region. One can therefore trivialize the nonnalline bundle in 
the region above the equatorial neighborhood and in the re
gion below independently. One wants to know if these two 
trivializations can be joined continuously through the equa
torial region. It was found in the discussion dealing with Fig. 
17 that the boundary of this region passes through both 
sheets of space-time, i.e., the regions above and below. Thus, 
if the nonnalline bundle can be trivialized on this boundary, 
the line section can be joined continuously from one sheet of 
space-time to the other. There is one more region where the 
line bundle must be extended, namely, the interior of the 
equatorial neighborhood. The splitting exists all the way 
down to but not including those parts of the equator on each 
Mobius band that still remains after the holes were cut to 
make the connected sum. Thus, if the two trivializations 
agree on the boundary of the equatorial region, one can tri
vialize everywhere in the equatorial neighborhood except 
possibly on what remains of the two center circles of the two 
Mobius bands. In fact this trivialization can be extended to 
the center circles before the holes were cut. There is no diffi
culty in constructing a line bundle over the center circle of a 
Mobius band as is evidenced by the line section fonned by 
the tangent vector to the center circle (see Fig. 7). Any line 
bundle that does not involve the rotation between the tan
gent plane and the spacelike normal vector that is described 
at the beginning of Sec. IV can clearly be trivialized over this 
center circle. If the trivialization can be extended to the cen
ter circle before the holes were cut, it certainly can be after 
the holes are cut. The difference between this line bundle and 
the orientation bundle is that the orientation bundle cannot 
be trivialized all of the way down to the center circles as one 
can with the nonnal bundle due to the splitting and the 
abrupt discontinuity in (3.5). The problem oftrivializing a 
nonnalline bundle over U2 has been reduced to whether the 
line bundle can be trivialized on the boundary of the two 
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FIG. 23. The two components of the intersection of a two set open covering 
of a Mobius band are labeled by "I" and "2." 

intersecting Mobius bands in Fig. 17.13 One does not even 
have to worry about the disklike regions that were removed. 
This does not affect the boundary of the neighborhood. 

First of all one describes a relevant example that has all 
of the concepts and constructions in the argument to follow, 
but has the advantage that it is easy to visualize and can be 
described explicitly in tenns of easy to follow figures. As a 
simple example, one looks at the problem of trivializing a 
line bundle on the boundary of a Mobius band. This was 
encountered in the discussion of the orientation bundle over 
S I, the boundary of the canonical open line bundle over RP I. 
If one were to cover a Mobius band with two open sets, as in 
Fig. 23, with the intersection denoted by the two open sets 
that are labeled 1 and 2, then there are two transition func
tions for any line bundle that can take on the values 1 or - 1. 
Call these functions a 1 = + 1 or - 1 and a2 = + 1 or - 1. 
If one restricts these open sets to the boundary of the Mobius 
band then there are four open one-dimensional sets in the 
intersection as indicated in Fig. 24. There are now four tran
sition functions that need to be specified to define a line bun
dle over the boundary of the Mobius band. These transition 
functions are labeled in Fig. 24. One has a l = ai = ai' and 
a2 = ai = a2. Clearly, the number of minus signs is an even 
number for any line bundle over the Mobius band that is 
restricted to the boundary. The various possibilities are tabu
lated in Table V. 

One can conclude that if there is a line bundle over a 
Mobius band, then there exists a continuous nonzero line 
section on the boundary. 13 This is a justification of the dis
cussion of the orientation bundle in the last section. It was 
stated that on the boundary of the canonical line bundle over 
RP 1 that if a tangent two-frame was transported around this 
circle then it must return to its starting point with the same 
orientation. 

This same argument can be applied to the neighborhood 
of the equator. However, there are many more intersections. 
Drawing these on top of Fig. 17 would be very confusing. 
The equatorial region can be covered by four open sets, two 
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I" 

1" 

FIG. 24. The two components of the intersection of the two open sets that 
are labeled in Fig. 23 have been restricted to the boundary of the Mobius 
band yielding four one-dimensional open sets. 

for each Mobius band. Call these sets VI and VIII for one of 
the Mobius bands and VII and VIV for the other. The Roman 
numeral sUbscripts are meant to be suggestive of the orienta
tion bundle that was described earlier. VI and VIII intersect 
in only one open set since the two Mobius are cut and spliced 
between the critical points (see Fig. 17). The intersection 
must be outside of the region of the handle of the Klein bottle 
that contains the two critical points (i.e., in the big loop of 
the Mobius band as drawn in Fig. 17). Similarly, 
VII and VIV intersect in one open set. All other pairs of sets 
intersect in two disjoint open sets. One of these disjoint sets 
lies between the two critical points. The other envelopes a 
region of the curve along which the connected sum is made. 
This cannot be pictured in Fig. 17 as the connected sum was 
unraveled to illustrate the critical point structure. There are 
a total often transition functions, {aj Ii = 1, ... , lD}, that must 
be specified for a normal line bundle over this region. As 
with the Mobius band, when these functions are restricted to 
the bounding circle there are 20 transition functions that 
need to be specified, {aJ,a~li = 1, ... ,lD}, where aJ = a~ = aj. 
Consequently, for these 20 transition functions there are an 
even number of minus signs, as in Table V. Hence, one can 
trivialize a normal line bundle over the boundary of the 
equatorial region. Consequently, one can choose a time di-

TABLE V. The transition functions for various line bundles over the 
boundary of a Mobius band. 

872 

Values ofthe transition 
functions of the line bundle 

over the Mobius band 

0.>0 
0.>0 
0.<0 
O2 <0 

O2 >0 
O2 <0 
O2 >0 
02<0 

Number of minus signs of the 
transition functions of the line 

bundle on the boundary 

o 
2 
2 
4 
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rection continuously on the Klein bottle that is never zero. 
This is a scalar time that can be chosen positive everywhere 
on the two-surface at r = O. For instance, if this time direc
tion appears future directed at asymptotic infinity then it 
will appear to point backwards in time on the past directed 
sheet of the Klein bottle. One can also conclude from the 
existence of this line section and the results of the Appendix 
that X(N) mod 2 = O. 

Now that it has been verified that the line bundle of time 
is trivializable, it is of interest to look at the hypersurface that 
is formed by this line bundle over U2 (the hypersurface given 
by r = 0). The nature of the immersion of this surface in the 
Kerr space-time will yield information on the orthogonal 
complement of the coordinate t in the normal fiber on U2• 

The conclusion will be that X(N) =to. Consequently, the 
concern over the divergence in the integrand of the Gauss
Bonnet integral for normal fibers that was expressed at the 
beginning of this section was justified. 

In order to study the immersion of the hypersurface at 
r = 0 in the Kerr space-time, one introduces the extrinsic 
curvature tensor of the hypersurface, Ka{J' In terms of the 
basis covectors, wa

, and the connection one-forms, wa
f3 , in 

the orthonormal frames of the ZAMO's (the zero angular 
momentum observers, see Ref. 1), the extrinsic curvature 
tensor is defined by 

wr
a = K af3 wf3· 

It is not difficult to convince oneself that this is the same 
extrinsic curvature tensor that is defined in Ref. 17 by the 
relation 

dna = Kaf3 dx f3, 

where na is the unit normal to the hypersurface and dxf3 is a 
one-form on the hypersurface. Therefore, dna is a vector
valued one-form. The two expressions for the extrinsic cur
vature are related by writing 

dna = V f3na dxf3, 

and using the definition of the covariant derivative in the 
ZAMOframe. 

The equations of structure were solved in Ref. 1 and 
restricted to the hypersurface r = O. Noting the corrections 
of signs from (Bl) of Ref. 1, 

K~~ = M sin2 
() /(a2 Icos3 

() I), 

K~, = - M sin2 
() /(a2 Icos3 

() I), 

K,~ = M sin () /(a2 Icos3 
() I), 

K" = - M /(a2 Icos3 
() I), 

all the other components of the tensor vanish. 
The tensor has three eigenvalues, the principal curva

tures of the immersion, 

kl = k2 = 0 and k3 = - M /(a2 Icos () I). 

There are three corresponding eigenvectors, the princi
pal directions, 

e1=e/J, e2=lcos(}l-l(e~+sin(}e,), 

e3 = Icos () 1-1(sin (}e~ + e,), 
where ea are the ZAMO basis vectors. It is interesting that e3 

is the four-velocity of the Klein bottle in space-time (see Ref. 
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1 ). The only curvature in the immersion is along the four
velocity of the Klein bottle. The world lines of the points of 
the Klein bottle are lines of curvature (the only lines of cur
vature) of the immersion. This suggests that the slicing of 
space-time at r = 0 and t = const is not just a random slicing 
of space-time. This fact lends more credence to the conjec
ture that the two-surface behaves as if it were a source for the 
geometry. 

It should be noted that k3 diverges when () = !1T. Since 
the entire equatorial region is not removed in the formation 
of the connected sum, this divergence must be investigated. 
This divergence is what gives rise to the normal curvature 
divergence that was discussed at the beginning of this sec
tion, as well as the divergence of R p,J..u{jRp,J..u{j for the Kerr 
space-time. 

On the equator, e3 is a null vector. From the definition of 
the extrinsic curvature in Ref. 17, it is obvious that one can
not trivialize the spacelike normal e r over an open set that 
contains the equator. This is clear since a displacement of e r 
along the world line of a point of the two-surface at () = !1T 
induces an infinite change in er (k3 diverges). There is no 
continuous nonzero spacelike normal section on any open 
set that includes the equator. 

Two things can be happening that explain this phenom
enon. First, the hypersurface may not be well behaved at 
() = !1T. Second, the Kerr manifold is not well behaved 
(R ,..VA.uR,..vA.u diverges). This may be inherent to the space 
external to the hypersurface and therefore the external space 
might be entirely responsible for the pathology that is ob
served in the extrinsic curvature. The fact that there are only 
two distinct principal directions of the extrinsic curvature 
tensor implies that a careful analysis is necessary to make 
sense out of the divergence of k3• Since it has already been 
proved that the timelike line bundle is trivializable, one 
would suspect that the hypersurface is well behaved. It will 
be shown in the following how this can happen. The fact that 
k3 diverges in a smooth manner as the equator is approached 
from another point of the hypersurface makes one believe 
that the divergence is real and significant. The breakdown of 
the eigenspace of the curvature tensor should be understand
able in a way that is consistent with the nature of this diver
gence. 

In order to ascertain the truthfulness of these conjec
tures, one must sort out two problems. First, the Boyer
Lindquist coordinates are not well behaved at r = O. Second, 
there is an actual pathology in the manifold structure 
(R p,J..{juRp,J..{ju diverges). Thus, there is no change of coordi
nates that allows the metric to be extended to the set r = 0, 
() = !1T. 

The Kerr metric can be expressed as the following line 
element in Boyer-Lindquist coordinates: 

ds2= - 0_2Mr/p2)dt2+p2d()2+ (1::,,2;p2)dr 

+ [(r + a2) + (2Mra2/p2)sin2 () ]sin2 
() dIP 

- (4Mra/p2)sin2 () d¢ dt, 

where 

p2 + r + a2 cos2 
(), a = r + a2 - 2Mr. 

At r = 0, () = !1T: p2 -+ 0 and the metric coefficients go 
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haywire, some of them discontinuously. Also, the volume 
element dV _p2 sin2 ()-+O. 

Denote the orthogonal stationary frame at infinity by 
the usual spherical coordinate basis, e i' Let ej denote a leg of 
the tetrad that is carried by a ZAMO. The coordinate trans
formation between the two frames is 

where 

fl == - gtf>t/gH' 
The basis convectors transform as 

[
wt] = [Igtt - fl2gtf>", 11/2 0] [d ] 
w'" - flg~2 g~2 d;' 

This definition of the ZAMO basis in terms of Boyer-Lind
quist coordinates is not well defined when p -+ 0 as well. This 
does not imply that there is no extension of the ZAMO 
frames (or at least some of the legs of the ZAMO tetrad may 
be extendible in a well-defined manner) top = O. One might 
be able to define the legs of the tetard in another coordinate 
system. 

In order to see just how much of the pathology of the 
space-time can be removed by a coordinate transformation, 
the well-behaved nature of the following area element should 
be noted in the ¢-t plane: 

dA"'t = {det I gtt g",t I} 1/2 d¢ dt = a 1/2 sin () d¢ dt, 
g",t g"'tf> 

lim dA"'t = a sin () d¢ dt. 
p-o 

The implication is that the pathology of the metric in 
this two-dimensional slicing of space-time is due entirely to a 
poor choice of coordinates. A change of coordinates can be 
used to get a well-behaved two-dimensional space of signa
ture 0,1). 

Since etf> and et only depend on a/at and a /a¢ and the 
metric coefficients gtt' g",,, and gH' one concludes that a 
change of basis can be chosen so that these two legs of the 
ZAMO tetrad can be extended to p = 0 in a well-defined 
manner. Thus, the four-velocity of the two-surface is still 
defined (as well as e3 ) whenp = O. 

One also needs to check that the concept of the two
surface is still defined as p -+ O. Going back to the definition 
of the Gaussian curvature of the two-surface: 

dw()", =KdA, 

K==O, except that it changes discontinuously to 00 atp = 0, 
since 

w() .. = sin () cos () [(r 2) 2Mra
2 

sin
2 

() 
'I' 1/2 +a + 2 

g",,,, P 

+ 2Mra2(r + a2
)sin

2 
()]d¢ 

p4 

+ (a function of () and ¢ ) dt 

is not well-defined at p = O. However, neither are the basis 
vectors e() and e",. It was shown that by a change of coordi-
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nates e¢> can be extended to p = O. But, what about e9 and 
W

9 ? ¢> • 

The fact that w9 
¢> is discontinuous is actually not a cause 

for alarm. The problem is totally analogous to a misconcep
tion that Chern had as a young man when he thought that he 
had "proved" that all two-surfaces are flat. 18 His reasoning 
went as follows. On a two-surface, S, w9¢> is a one-form. 
Therefore dw9 

¢> is a two-form. Hence, dw9 
¢> is proportional 

to the area element (dw9 
¢> = K dA ). The form dw9 

¢> repre
sents the Euler class in cohomology. But, if w9 

¢> is defined in 
a global basis then dw9 

If> represents 0 in the cohomology 
module H 2 (S) (dw9¢> is exact). This implies that the Euler 
class is zero or equivalently that the surface is flat. 

The conclusion is wrong because by assuming that w9 
¢> 

is defined in a global basis assumes the conclusion (the basis 
vectors eo and e¢> are two continuous vector sections). The 
correct way of defining the connection one-form is in terms 
of an open cover {Ua } of S, 

where (w9
¢»a is a one-form on Ua that can be pieced togeth

er to form a global one-form onS. Obviously, one needs more 
than one open setto cover U2 • Thebehaviorofw9

¢> atp = Ois 
due to the fact that the basis vector e9 cannot be a global 
continuous nonzero vector field on U2 ife¢> has already been 
chosen to be one (U2 admits only one independent contin
uous nonzero vector section) as well as the pathological na
ture of the coordinates at p = O. 

The conclusion is that the two-surface is indeed flat and 
coordinates can be defined on the surface locally but not 
globally. There is no nonzero extension ofe9 top = 0, yet the 
two-surface is perfectly well behaved. This is manifested in 
the vanishing of g99 at p = O. The only way of extending g99 
continuously throughp = 0 on the two-surface is ifit vanish
es. Remember that there is only one global nonzero contin
uous vector field on U2• But, if the orthogonal vector field is 
allowed to vanish at certain points it can be defined continu
ously as well. 

The inescapable conclusion of these arguments is that 
the hypersurface is well behaved and it is the spacelike nor
mal er that is pathological. The divergences in R /,vAuR"VAu 

and k3 imply that the space-time is not a manifold at p = O. 
As a matter of fact the entire concept of an er direction 
breaks down on a two-dimensional set that is spanned by the 
null vectors, e¢> + et (the four-velocity of the two-surface at 
() = !1T) and - e¢> + et • Since the hypersurface is well de
fined, the divergence in k3 implies that e r cannot be well 
defined at p = O. Thus, there is no nonzero continuous sec
tion of er on any open set of the hypersurface, or therefore 
the two-surface, that contains the setp = O. Finally, one ar
rives at the conclusion that X(N) #0 even though it was 
previously found that X2(N) = O. 

The pathology of the radial coordinate at p = 0 can be 
caused by one of two things. The space-time could be 
"cusped" or "bumpy" in the radial direction. Alternatively, 
the radial direction might be "curled-up" in a continuous 
manner along the two-surface near p = 0 as indicated by the 
continuity of k3• Finally, at p = 0 the radius of curvature of 

874 J. Math. Phys .• Vol. 28. No.4. April 1987 

this curling-up process actually becomes zero and the di
mension in the spacelike normal direction vanishes. The re
sulting space-time would be four-dimensional everywhere 
except along a two-dimensional subset where the dimension 
of space-time is reduced to 3 (only the hypersurface dimen
sions remain). Thus, the space-time is not a manifold. How
ever, one can still define subspaces that are manifolds. Since 
the larger space is a CW complex (see Ref. 19 for a defini
tion) as stated in Ref. 9, one can still define characteristic 
classes on subspaces that are manifolds as is done in this 
paper. Finally, it should be noted that all of these results 
involving the immersion of the hypersurface are unchanged 
when the open set is removed in the formation of the con
nected sum. 

Now that the normal Euler number has been analyzed, 
it can be used with confidence in the following. A key as
sumption that was mentioned earlier in this section is that 
the global four-manifold should be orientable. This is a phy
sically reasonable assumption that is compatible with con
servation of angular momentum. If the space were not orien
table a particle with positive helicity can travel around a 
closed path and return to its starting point with negative 
helicity. This does not seem physically reasonable. If the 
four-manifold is orientable then there exists a local Z (the set 
of integers) orientation of M (the Kerr manifold) along U2 

(Ref. 19). With these two facts one can construct most of the 
relevant characteristic classes and obstruction cocycles. 

These two facts can be implemented in a study of the 
Stiefel-Whitney classes of the normal and the tangent bun
dles. These are the relevant characteristic classes since the 
bundles to be considered are nonorientable. The Stiefel
Whitney classes of a fiber bundle, B, are equiValence classes 
in a sequence of cohomology modules with coefficients in Z2 
(integers mod 2),9 

(3.6) 

The Stiefel-Whitney classes can be defined by a set of 
axioms as in Milnor and Stasheff.9 They also have a geomet
rical significance in terms of obstruction theory. This is how 
Whitney first discovered them in Ref. 10. 

In order to elaborate on the interpretation as an obstruc
tion to forming a cross section, assume that the bundle, B, is 
a finite cell complex (Milnor and Stasheff say in Chap. 12 of 
Ref. 9 that this argument is also true for CW complexes). If 
L is a sUbcomplex with a cross section defined on it then it is 
trivial to extend the cross section to the remaining O-skele
ton, K 0, of B that is not contained in L (Steenrod, p. 148).8 

One can try to continue the process as follows. A cross sec
tion is now defined on LUKo, but can it be extended to the 
one-cells, LUK I ? This can happen if and only if a certain 
obstruction cocycle, cl(B), vanishes. Similarly, if the cross 
section can be defined on the q - 1 skeleton, L UK q - I, it 
can be extended to L UK q if and only if the obstruction cocy
cle, cq(B), represents the 0 element in the q-dimensional co
homology module of the bundle. 8 As a consequence of this, if 
B is a trivial bundle then ci(B) = 0 Vi. 

When i is even ci(B) is an element of the cohomology 
module H i(B,Z2)' When i is odd or i = n, where n is the 
dimension of the fiber, the coefficients of the cohomology 
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module are infinite cyclic.8 However, as Milnor and Stasheff 
point out they are not canonically isomorphic to the inte
gers.9 They are a twisted bundle of coefficients as described 
in Ref. 8. These coefficients will be labeled 00. The discus
sion in this paragraph is tabulated in (3.7): 

ci(B)elf i(B, 00 ), i = odd or i = n, 
(3.7) 

ci(B)elf i(B,Z2)' i = even. 

The Stiefel-Whitney classes alleviate the complications 
of the twisted bundle of coefficients by taking the unique 
nontrivial homomorphism of 00 -+Z2' The Stiefel-Whitney 
classes are the obstruction cocycles mod 2, 

wi(B) = ci(B)mod 2, i = odd or i = n, 
(3.8) 

wi(B) = ci(B), i = even. 

The cost of taking the obstruction cocycles mod 2 is a 
loss of information. The gain is that there are formulas that 
are derivable from the ring structure of H i(B,Z2)' namely, 
the Whitney product formula, (3.11). This digression is nec
essary because the Wi'S do not contain enough information in 
themselves and a knowledge of the ci's is needed in some of 
the following. 

Every manifold has a Z2 orientation. Define the funda
mental homology class of a manifold M of dimension n cor
responding to the orientation as pelf n (M'Z2)' 19 If one takes 
the Kronecker product [w2 (N),p] then the resulting num
ber X2(N) is the normal Euler number modulo 2, w2(N) is 
the second Stiefel-Whitney class of the normal bundle over 
the Klein bottle, and p is the fundamental class on U2,1O 

[w2(N(U2»),JL] =X2(N) (3.9a) 

and similarly 

[w2(T( U2) ),p] = X2( U2), (3.9b) 

where T( U2 ) is the tangent bundle over U2• 

For a Klein bottle X = O. Thus, X2( U2) =X2(T( U2») 
= 0 and by the nondengeneracy of the Kronecker prod

uct,19 

(3.lOa) 

It was also deduced in this section that X 2(N( U2) ) = 0, hence 

w2(N( U2 ») = o. (3.lOb) 

In Corollary 11.4 of Ref. 9 Milnor and Stasheff show 
that the vanishing of w2 (N) is consistent with but does not 
prove that the immersion of the base submanifold (in this 
case U2 ) is an embedding. There are a couple of reasons to 
conjecture that this might be an embedding. First, the Gaus
sian curvature vanishes everywhere making this a flat Klein 
bottle. It is hard to understand how a surface can have self
intersections if the curvature vanishes. Second, by the meth
od of moving frames for a submanifold (2.2) and (3.1), 
K = R () '" and the normal curvature N = R ',. In this sense, 
the two-dimensional surface at r = 0 is molded to the geome
try of the Kerr manifold at r = O. This lends more credence 
to the conjecture that the hypersurface at r = 0 is a physical
ly significant slicing of the global four-manifold (Le., a 
source). 

It is not hard to convince oneself that a bundle is orienta
bleifandonlyifcl(B) = 0 (Steenrod, Theorem 38.12). But 
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U2 is not orientable so cl(T(U2»):;l:0. Since this is an ele
ment of odd-dimensional cohomology, then by (3.8), 
cl(T(U2») mod 2 = W

I(T(U2»). Thus, W
I(T(U2») mayor 

may not be zero. Write wl(T( U2») = a. By Theorem 4.10 of 
Ref. 9, if all of the Stiefel-Whitney classes of a manifold, M, 
are zero then M can be realized as a boundary of a smooth 
compact manifold. Take the standard immersion of U2 inE 3. 

This is a one-sided surface.s It cannot bound anything. Thus, 
a :;l: 0 for all Klein bottles. 

One can express wl(N( U2») in termsofwl(T( U2») by the 
Whitney product formula. Defune two bundles sand 7J over 
the same base space then the Whitney product formula can 
be written as9 

k 

wk (SGl7J) = L wi(s)_ W k
-

i(7J), (3.11 ) 
i=O 

where _ is the cup product and WO = 1elf°(B,Z2) and the 
symbol Gl denotes the Whitney sum of sand 7J (see Milnor 
and Stasheff,9 p. 27). This is a useful relation because the 
tangent bundle of the Kerr manifold, M, along U2 is isomor
phic to the Whitney sum of T( U2 ) and N( U2 ) (Corollary 
3.4 in Milnor and Stasheff 9), 

T(U2) GlN(U2)~T(M)w, (3.12) 

where T(M) I u, is the tangent bundle to M along U2 (Le., an 
R4 bundle over U2 ). 

It was previously assumed that the Kerr manifold is 
orientable. Thus, there exists a local Z orientation of M along 
U2. Therefore, wl(T(M)wJ = 0 by the previous remarks 
about cl(B) and orientability. According to the Whitney 
product formula, this condition can only be satisfied if 
wl(N( U2») = - a = a (since there are Z2 coefficients 
a = - a), which is consistent with the fact that the normal 
fiber over U2 must be nonorientable if U2 is embedded in an 
orientable space. The Stiefel-Whitney classes are compiled 
in Table VI. Note that a-a is not necessarily zero. The cup 
product with Z2 coefficients implies that 2(a_a) = 0. 19 

Another use of (3.11) is that it tells one that Wi of the 
hypersurface at r = 0 is nonzero. Hence by Theorem 4.9 of 
Ref. 9 it cannot bound a smooth compact four-manifold. 
Thus, if one were to take a large compact four-dimensional 
subset of the Kerr manifold, M (Le., one that includes times 
well into the past and the future as well as large spatial di
mension), that intersects the hypersurface at its end points 
in time, then there is no compact surface in M that can be 
bounded by the hypersurface at r = 0 that is restricted to this 
range of times. This is equivalent to the statement that was 

TABLE VI. The Stiefel-Whitney classes for various fiber bundles over the 
two-surface at r = O. 

Tangent bundle 

WO(T(U2 ») = 1 

w1(T(U2 ») =0 

w2(T(U2 ») =0 

Nonna! bundle 

uP(N(U2 ») = 1 

w1(N(U2 ») =0 

w2(N(U2 ») =0 

All other uI 's that are not tabulated 
are identically zero by definition.· 

"See Ref. 9. 

R4 bundle 

uP(T(M) IU,) = 1 

w1(T(M)IU,) = 0 

w2(T(M),u,)=o-a 

uf(T(M)IU,) =0 
w4 (T(M),u,) = 0 
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made in the last section that the hypersurface turns space
time inside out onto itself. 

Stiefel-Whitney classes can be interpreted as obstruc
tions to forming independent nonzero vector cross sections. 
A bundle admits a continuous vector cross section only if the 
top obstruction, the Euler characteristic, vanishes. T( U2 ) 

admits at least one continuous section, as is well known. But, 
neither the normal or the tangent bundle can be trivialized 
(i.e., admit two continuous cross sections) because w l :;60 
(see Milnor and Stasheft/ p. 39). Thus, T( U2 ) admits one 
cross section and N( U2 ) admits at most one cross section. 
Similarly, if a Ua:;60 then T(M) I u, cannot admit three cross 
sections. If it could, one could break up T(M) IU, into its 
trivializable part, E, and its orthogonal complement c. Then 
the Whitney product theorem (3.11) implies that 
w2 = w3 = w4 = 0, which is a contradiction. This same idea 
can be used to prove the proposition on p. 39 of Milnor and 
Stasheff 9 that was cited a few sentences back. This is a pre
view of the discussion of the R4 bundle over U2 to be present
ed in the next section. 

With the obstruction information as a guide, one can 
construct representatives of equivalence classes of normal 
bundles over the Klein bottle. As was noted in Sec. II, one 
needs to cover U2 with four open sets in order to get all of the 
geometric information on the two-surface at r = o. All of the 
equivalence classes of normal bundles should result from 
looking at the possible sets of transition functions that can 
result on the intersections of the four sets W;, i = 1, ... ,4, that 
were defined in Sec. II. It will turn out that the bundle struc
ture for the normal bundle is mirrored in the tangent bundle 
as a result of the orientability of the Kerr manifold in which 
U2 is immersed. 

There is a reduction of the normal bundle to the asso
ciated principal bundle over U2 that has a fiber that is the 
group 0 ( 1,1).16 This group has four connected components 
that are all disjoint from each other. The four components 
can be associated with the identity, time reversal, a parity 
(actually the reflection through an axis in the plane; the term 
parity will be used as it is a word that is familiar in physics) , 
and a combination of a parity and a time reversal. In matrix 
form an arbitrary element of 0(1,1) can be written as a 
product of the following kinds of elements. An element of 
the group that is in the component that is connected to the 
identity, I, is ofthe form 

(
cosh a sinh a) 

gJ(a) = . h h' O";;a< 00. 
SID a cos a 

(3.13a) 

A time reversal, T, and a parity, P, are given by the matrices 

T= (
-1 

o 
(3.13b) 

Any element ofO( 1,1) can be obtained by multiplying ma
trices ofthe type given by (3.13). Referring back to the state
ment in the previous paragraph about determining all ofthe 
equivalence classes of normal bundles from the covering by 
four open sets, if one takes a refinement of the open cover 
{W;l, then one gets a bundle that is equivalent in the group 
0(1,1) to the one generated by the cover {w;l (Steenrod, 
Lemma 2.8). The reason that this is true is that it will be 
shown that the transition functions for the cover {Wi} are 
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just constants, either I, P, T, or PT. A refinement of anyone 
of the open sets will introduce transition functions that all lie 
on the same connected component of 0 ( 1,1). All of the tran
sition functions among the sets that make up the refinement 
of one oft he Wi will be of the form (3.13a). The problem of 
finding equivalence classes for the normal bundle is reduced 
to studying the equivalence classes that are induced by the 
cover {Wi}. 

Noting that there exists a l orientation of M along U2 

(for the sake of argument say it is positive) and that the 
transition functions of the orientation bundle over U2 are 
given by (2.5a)-(2.5f) as well as the discrete isometry that 
relates the two sheets of space-time, one can write the follow
ing transition functions for a normal bundle: On 

(3.14a) 

(3.14b) 

WI n W2: gIl = g22 = I, gl2 = g21 = TP, 

W3 n W4: g33 = g44 = I, g34 = g43 = TP, 

(WIn W3)1: gIl =g33 =gl3 =g31 = I, 
(3.14c) 

(WI n W3)2: gIl = g33 = I, gl3 = g31 = P, 

(WlnW4)1: gIl =g44 =1, g14=g41= TP, 
(3.14d) 

(Wl nW4h: gIl =g44 =1, gI4=g41=T, 

(w2n W4 )1: g22 = g44 = g24 = g42 = I, 
(3.14e) 

(w2n W4)2: g22 = g44 = I, g24 = g42 = P, 

(w2 n W3 )1: g22 =g33 =1, g23 =g32 = TP, 
(3.14f) 

Since the transition functions lie on four disconnected 
components ofO( 1,1), it is clear that there can be no contin
uous cross section of the associated principal bundle to the 
normal bundle. Hence, the normal bundle is not equivalent 
to the trivial bundle in the group O( 1,1) by Theorem 8.3 and 
Corollary 8.4 of Steenrod. 8 This is equivalent to saying that 
the normal bundle is not parallelizable, which is consistent 
with the discussion of characteristic classes. 

Similarly, one can consider the tangent bundle by the 
reduction to the group 0(2). The group 0(2) has two con
nected components that are disjoint from each other. The 
group is generated by a parity and rotations in the plane. In a 
manner that is consistent with the treatment of the orienta
tion bundle in (2.5), the transition functions are chosen to be 
the same as (3.14) with the substitutions, TP-+rotation by 17" 

radians, and T -+ parity composed with a rotation by 17" ra
dians. The transition functions for the tangent bundle are 
given by (3.15), 

(3.14) with TP-+rotation by 17", T -+po(rotation by 17"). 

(3.15 ) 

In direct analogy to the normal bundle, since the transition 
functions lie on two different components of 0 (2), the Klein 
bottle is not parallelizable as is well known. 

It can be seen by the constructions in (3.14) and (3.15) 
that by orientability of M, the transition functions of the 
tangent bundle determine those in the normal bundle and 
vice versa. Thus, it is clear that there is a one to one corre
spondence between equivalence classes of normal bundles 
and of tangent bundles. 

Let B be a bundle with group G over a space X. Define 
Ge as the component of G connected to the identity and 
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11' I (X) is the fundamental group of X. One defines the char
acteristic class, X(B), of the bundle by an equivalence class 
of homomorphisms (Steenrod, 13.10) 

X: 11'1 (X) -G JGe • (3.16) 

For 0(2), G JGe ~Z2 and for O( 1,1), G JGe is a group with 
four elements that is not isomorphic to Z4' Its elements are 
given by the commuting matrices 

(3.17a) 

or equivalently, 

a = I, b = P, c = T, d = PT. (3.17b) 

There are numerous characteristic homomorphisms (12) 
from the fundamental group of U2 to G JGe of 0(1,1) that 
are inequivalent. However, the only ones that are consistent 
with the global orientation of the Kerr manifold and the 
discrete isometry at r = 0 can be determined by their one to 
one correspondence with the equivalence classes of tangent 
bundles that was mentioned earlier. 

11' I ( U2 ) has two noncommuting generators, a and b, that 
obey the single relation ab = b -la.8 Consequently, there are 
two nontrivial equivalence classes of tangent bundles. This 
follows by an application of 13.9 of Steenrod to the reduction 
of the tangent bundle to the principal bundle with fiber 
0(2). These classes correspond to the inequivalent homo
morphisms 

_ (1 
X: a- 0 

- (1 X: b- 0 

~), 

~), 

- (+ 1 h- o (3.18a) 

_ (+ 1 a- o (3.18b) 

where the matrices in (3.18) are a standard representation of 
Z2' The inequivalence of the homomorphism is in the follow
ing sense: there is no inner automorphism gX( ii )g-I, g~, 
thatcanmapx(a) in (3.18a) tox(a) in (3.18b) (seeSteen
rod,13.5). 

If (3.18a) corresponds to the bundle that was construct
ed in (3.15), then it is easy to see how to construct the tan
gent bundle that corresponds to (3.18b) from the discussion 
of the orientation bundle in Sec. II. There was one arbitrary 
construction in the formation of the orientation bundle. This 
was the choice of WI and W2 to have the same orientation. 
This was the same arbitrary choice that was made in Table II 
when region II was chosen instead of region IV. This choice 
of orientation fixed all of the other transition functions. The 
inequivalent tangent bundle is obtained by choosing WI and 
W2 to have opposite orientations. Then the transition func
tions of the new bundle are the same as (3.15) with the sub
stitutions: rotation by 11'++parity composed with rotation by 
11', or this can be expressed by (3.19), 

(3.14) with the substitutions TP-PO(rotation by 11') 

T - (rotation by 11'). 
(3.19) 

Similarly, there are two inequivalent homomorphisms 
of 11'1 (U2 ) to G JGe of 0(1,1) that are exactly the same as 
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those in (3.18). One can identify the matrices in (3.18) with 
elements in (3.17). These homomorphisms represent the 
unique equivalence classes of normal bundles that are con
sistent with the global orientation of the Kerr manifold and 
respects the existence of two sheets of space-time at r = 0 
that have opposite local time directions. The new equiv
alence class of normal bundle has transition functions that 
are given by 

(3.14) with the substitution T++TP. (3.20) 

IV. THE R4 BUNDLE OVER IJ2 

One can use the results of the previous section to give a 
quick study of the R4 bundle over U2• The four-frame bundle 
is particularly interesting since the four legs of a pseudo
orthogonal tetrad can be associated with the measuring rods 
and clocks of physical observers at r = O. Fortunately, al
most all of the obstruction information was derived in Sec. 
III and is contained in Table VI. 

First of all, the R4 bundle is orientable since there exists 
a local orientation of M along U2• This implies that the R4 
bundle can be reduced to a principal bundle with fiber 
SO(3,1). Here SO(3,1) is isomorphic to RP3 X R3 which 
is homotopically equivalent to RP3. Therefore, 
11' I(SO( 3, 1 )) ~11' I (RP 3) ~Z2' Thus, by (3.18) there exist two 
nontrivial inequivalent classes of R4 bundles over U2, corre
sponding to the constructions that were made for the tangent 
and normal bundles at the end of the last section. 

The Stiefel-Whitney classes for the R4 bundle were tab
ulated in Table VI of the last section. There was one ambigu
ity, was w2(T(M)IU ) zero or not? In this section it will be 
h 2' 

S own that c (T(M)lu,)#O. If c2(T(M)IU')#0 then there 
can exist at most two linear independent four-vector cross 
sections over U2• As an example of why this needs to be 
investigated is the Mobius band that is embedded in E 3. The 
tangent bundle admits one vector section and the normal 
bundle does not admit any, but the R 3 bundle is trivializable. 
In order to see how this happens, define a Mobius band with 
a constant twist. Describe the geometry in spherical coordi
nates. The center circle of the Mobius band is a circle about 
the z axis in the equatorial plane given by 

S(c/J) = cos(c/J)x + sin(c/J)Y. (4.1) 

The tangent vector to the Mobius band along the center cir
cle that is orthogonal to the center circle is given by 

t(c/J) = cos(!c/J)z + sin(!c/J)(cos(c/J)x + sin(c/J)y) (4.2) 

and the normal vector field along the center circle is given by 

n(c/J) = - sinqc/J)z + cosqc/J)(cos(c/J)x + sin(c/J)y). 
(4.3) 

n (c/J) and t (c/J) do not form a global system of coordinates 
over the Mobius band as they are double valued. Define glo
bal orthonormal coordinates in R3 along the Mobius band as 
in (4.4), 

el = cos<!c/J )t(c/J) + sin(!c/J)n (c/J), 

e2 = - sin(!c/J )t(c/J) + cos(!c/J)n (c/J), 

e3 = cos(c/J)x + sin(c/J)Y. 

Then the three vector fields, 
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el = cos{¢)z + sin(¢)(cos(¢)x + sin(¢)y), (4.5a) 

e2 = - sin(¢)z + cos(¢)(cos(¢)x + sin(¢)y), (4.5b) 

e3 = cos(¢)x + sin(¢ )y, (4.5c) 

are three independent cross sections since they define single
valued coordinates. A rotation in the plane that is spanned 
by t (¢) and n (¢) was used to trivialize the bundle. This is 
the same as saying that the bundle is equivalent to the trivial 
bundle in SO(2). Here SO(2) CSO(3) implies that the]R3 
bundle is trivializable. 

One might think that it could be possible to do a similar 
thing with the ]R4 bundle on U2 by rotating in the (¢,t) plane 
and the (r,O) plane independently. This is the same as trying 
to find a section for the associated principal bundle with fiber 
SO(3,1). However, a continuous rotation in the (¢,t) plane 
rotates spacelike regions through the light cone into timelike 
regions. This is inconsistent with the pseudo-Riemannian 
nature of the manifold. Thus, one cannot do the same thing 
that was done for the Mobius band in E 3. This was hinted at 
by the fact that there are only two equivalence classes for the 
R4 bundle. This means that all of the information in the R4 
bundle can be obtained by its decomposition into its normal 
and tangent components unlike the R3 bundle over the Mo
bius band. Thus there is an obstruction to continuing a cross 
section of the R4 bundle to the two-skeleton of M. One con
cludes that c2 (T(M) I u,l =10. 

The other obstruction cocycles can be evaluated more 
directly. The existence of the vector cross section in the tan
gent bundle implies that there is at least one vector cross 
section of the R4 bundle. Thus,c4 (T(M) 10,) = 0. 8 The orien
tability of the bundle as stated earlier implies that 
cl(T(M)lu,) = O. 

In order to proceed further, construct a four-dimension
al manifold by taking a tubular of U2 (as Whitney does in 
Ref. 10). This is a four-manifold, M', that must be orientable 
since it is a four-dimensional submanifold of M. Hence, 
c3

( T(M') 10, ) =c3
( T(M') 10,) = c3

( T(M) I u,) must vanish by 
the orientability of M' as discussed in Whitney, 10 p. 137. It 
should be noted that the breakdown of the four-manifold 
structure at p = 0 is a technicality that is not always men
tioned. It is irrelevant to these arguments since the spaces are 
CW complexes for which the same conclusions will hold. 

The results of the investigation of the obstruction co
cyles are tabulated for the ]R4 bundle over U2 in (4.6), 

cl(T(M) 10,) = wl(T(M) 10,) = 0, 

c2(T(M) 10,) = w2(T(M)lu,) = a_a, 

(4.6a) 

(4.6b) 

by (3.8) and a -a cannot be zero by the discussion in this 
section 

c3(T(M)IU,l = w3(T(M)lu,) = 0, 

c4(T(M) 10,) = w4(T(M)lu,) = o. 

v. SPINORIALIZED NULL FLAGS 

(4.6c) 

( 4.6d) 

Penrose has attempted to define the Weyl spinors of the 
Lorentz group SO (3, I) [corresponding to fundamental rep
resentations ofSL(2,C)] by a purely geometric realization. 
His construction, a null flag, involves a null vector and a 
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spacelike half-plane. The reader is referred to Chap. I of Ref. 
3 as the details of the invariance of this construction are too 
lengthy to be duplicated here. Although this construction is 
successful in many ways, spinors of opposite sign have been 
identified with each other. He is forced to introduce "spinor
ial" objects in an ad hoc and not well-defined fashion in order 
to resolve this ambiguity. In essence, the fundamental geo
metrical difficulty in interpreting the 2 to I mapping from 
SL(2,C) ...... SO(3,1) is glossed over. The aim of this section is 
to show how a spinorialized version of null flags arise natu
rally in the Kerr manifold. 

The reason why Penrose's construction fails can be seen 
by the following interpretation in terms of fiber bundles over 
the two-sphere. A null vector, nl', is given by nl' = "'(TI'~, 
where (TI' is a 2X2 Pauli spin matrix and", is a Weyl two
spinor. This is the mapping that associates a spinor with a 
null direction. A particular null vector, n 1', determines", up 
to a phase, eia

• The set of spatial orientations of spinors is 
isomorphic to the rotation group, SU(2), by the transitive 
action of SU (2) on the space of two-spinors. SU (2) is topo
logically S3. Here SL(2,C) is topologically S3 X R 3, where 
R 3 represents the three possible boost directions. The boosts 
will be ignored for now so that one can study the effects of 
spatial rotations. The set of unboosted future directed null 
vectors span the null sphere at infinity S2+ [by unboosted 
one means in Penrose's construction that the extent of the 
null vectors (see Ref. 3 for a definition) is constant or equiv
alently one has taken a constant time section of S 2+ with 
t = I in his coordinates]. The phase ambiguity in the map
ping from null vectors to spinors, eia

, corresponds to a circle, 
S I. If one fibers the sphere S 2 with circles, S I, by the Hopf 
fibration then one has the set of spatial orientations of spin
ors, namely, S 3 (Ref. 8). Penrose almost did this. The set of 
spatial orientations of null flags of fixed extent is an S 1 bun
dle over S 2. The null vectors or flagpoles span S 2+ , the base 
space. Penrose fibered this with his half-plane flags which 
are spanned by the flagpole and a vector in the tangent space 
at a point pES 2+ , where p is the point at which the flagpole 
pierces the null sphere. The set of null flags of fixed extent is 
therefore isomorphic to the tangent bundle over 
S 2+ ' T(S 2+ ). If the extent of the flagpoles were not held 
fixed then the space of possible configurations of null flags is 
isomorphic to T(S2+ ) xR 3. As is well known the tangent 
bundle to the two-sphere is the real projective three-space.8 

The set of spatial orientations of null flags of fixed extent is 
therefore RP 3 ~ T(S 2). RP 3 can be realized as a circle bundle 
over S 2 (Ref. 8). This is clear since the tangent bundle can be 
reduced to a principal SO(n) bundle. SO(2) is topologically 
S I. Thus, the set of spatial orientations of null flags of fixed 
extent is theS 1 bundle over S 2 that is topologically RP 3. The 
circle bundle that corresponds to the spatial orientations of 
the spin vectors is the Hopffibration of S 3. Here S 3 maps 2 to 
I to RP 3; hence the sign ambiguity in Penrose's construction. 

If one constructs a line bundle over RP 3, one can clearly 
obtainS 3 (RP 3 ~S 3/Z2). Such a line bundle arises naturally 
in the Kerr geometry. One has a mapping from the two
surface at r = 0 to the null sphere at infinity by means of the 
principal null congruences. The line bundle can be thought 
of as arising from the orientation bundle along the set of 
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"base" points of the principal null congruences as they leave 
the two-surface at r = 0 (i.e., the orientation bundle that was 
constructed in Sec. II). The flag is essentially (for flagpoles 
of fixed extent) a point on a circle in the tangent space at 
some point of S 2+ • This circle is replaced in this construc
tion by a Mobius band (i.e., a nontrivial line bundle over S 1). 
Similarly, one can use the boundary of a Mobius band to give 
a double covering of S 1 in order to describe the possible ori
entations of the flag half-plane about the flagpole. More rele
vantly, this could also correspond to the circle of 41r radians 
that bounds the equatorial region of the two-surface at r = 0 
that was described in Fig 17. As discussed in Sec. II, this 
circle passes through the positive orientation sheet of the 
two-surface for half of the circle and the negative orientation 
sheet on the other half. Thus, for each flagpole, the equator
ial circle covers the possible orientations of the null flags in a 
two to one manner. 

The two to one covering of T(S 2+ ) can be traced to the 
decomposition of U2 into its two constituent RP 2 'so By 
transporting a normal vector around closed paths in RP 2 one 
can obtain a normal vector of opposite sign after completing 
the circuit (nonorientability ofRP 2

). Thus, the inward and 
outward pointing normals of RP 2 can be related by contin
uous translations around the surface unlike the case for S 2 

(since S 2 is orientable, translating an outward pointing nor
mal around a close curve yields an outward pointing nor
mal). Thus, in the immersion ofRP 2 in a pseudo-Rieman
nian four-space the set of spacelike normals has one 
connected component that can be mapped one to one to the 
points of the two-sphere (not just a hemisphere!). Similarly, 
the spacelike component of the normal space of two RP 2 's 
can double cover S 2. This mapping is realized by the compo
nent of the principal null congruences in the normal space to 
U2 (Ref. 1). The double covering of the null sphere at 
asymptotic infinity is accomplished by means of covering S 2 

with both ingoing and outgoing principal null congruences. 
There is a global consistency requirement of this con

struction. If a spinorialized null flag is rotated by () = 21T 
radians, it is the same as rotating by ¢ = 21T radians as in 
(5.3 )-(5.5). One must be on the same sheet of the line bun
dle over RP 3. This is guaranteed by the global geometry of 
the two-surface at r = 0 that is given in Figs. 19 and 21. The 
remainder of this section is an attempt to make the global 
consistency requirement and the actual mapping to spinor
ialized null flags more explicit. To do this one needs to in
voke many of Penrose's constructions for null flags. 

This construction can be considered as a double cover
ing of the Riemannian sphere, where the tangent spaces are 
double covered as well. The interesting thing is that the 
Klein bottle has a hole in it and the sphere does not. If one 
pictures the Klein bottle as a sphere with a handle as in Fig. 
14, then the hole is the region between the handle and the 
sphere. The origin of the hole in U2 is the two holes (regions 
homeomorphic to a disk) that were cut in the two RP2 's in 
making the connected sum. These holes were like two infini
tesimally thin slits at the equator at r = 0 before the connect
ed sum is made. However, after the connected sum is 
formed, the resulting topology implies that the hole must be 
ofthe same size as the handle (see Fig. 14). One concludes 
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FIG. 25. The stereographic projection from the north pole of S2+ into the 
Argand plane at z = 0 with complex coordinate t. 

that the hole is of infinitesimal extent in every direction. The 
hole itself does not tum up on the doubly covered lIphere at 
infinity but the mouths of the handle do (i.e., where the 
handle joins the sphere in Fig. 14). The mouths of the handle 
are illustrated in Fig. 22. These mouths tum up as infinitesi
mal holes in the doubly covered sphere (see Figs. 26 and 27). 
On the doubly covered sphere at infinity, they simply appear 
as junctions between sheets of the double covering. 

The Riemannian sphere results from the stereographic 
projection of the null sphere that is spanned by the flagpoles 
into a plane. The coordinates on the plane are given by (5.6) 
in terms of complex numbers making this an Argand plane 
(See Fig. 25). The north pole cannot be projected into the 
plane and must be attached to the entire boundary of the 
plane of infinity resulting in the Riemannian sphere. 

Figure 14 leads straightforwardly to a mapping from the 
two-surface at r = 0 to a doubly covered sphere at null infin
ity as pictured in Fig. 26 by just integrating out along the 
principal null geodesics. The dashed lines represent a nega
tive spatial orientation at the base points of the principal null 
geodesics that span this covering of the null sphere at infin
ity. The solid lines represent the covering ofthe null sphere 
at infinity that has a positive orientation at the base points. 
Note that in this construction the future directed sheet of the 
two-surface at r = 0 maps to the northern hemisphere (2 to 
1) and the past directed sheet to the southern hemisphere. 

FIG. 26. The doubly covered sphere. The dashed inner sphere is the nega
tive orientation sheet and the solid line outer sphere is the positive orienta
tion sheet. The junctions between the two sheets are given by Fig. 19. The 
small circles represent the image of the mouths of the handle of the Klein 
bottle at r = o. 
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There is an equivalent (on the level of fiber bundles) con
struction where the mappings are reversed. 

The infinitesimally small mouths of the handle of the 
Klein bottle at r = 0 integrates so as to represent the inter
sections of the meridianal junction and the equatorial junc
tion on the doubly covered sphere in Fig. 26. The equatorial 
junction is between hemispherical regions that are distin
guishable in that the null generators that span these regions 
have origins on different sheets of space-time at r = O. It was 
established in Sec. III that there exists a trivial normal line 
bundle over the Klein bottle. This corresponds to choosing a 
future time direction over the whole surface as viewed in the 
stationary frame at asymptotic infinity. Thus, all of the null 
geodesics that strike the doubly covered null sphere can be 
chosen to be future directed. This implies that at the points of 
origin on the past directed sheet these null geodesics must 
appear past directed to local observers at r = o. One can 
represent the two sheets of the doubly covered sphere as 
corresponding to different orientations of S 2 • The positive 

. . . + 
onentatIOn IS represented by an outward pointing normal 
vector field corresponding to kout (using the notation for the 
principal null geodesics that was introduced in Sec. II). The 
negatively oriented sheet of the doubly covered sphere has 
kin as the normal vector field. The meridian that is signified 
in Fig. 26 (a junction between the two sheets of the doubly 
covered sphere) represents the fact that one sheet rotates 
into the other after an azimuthal rotation of 21T radians. 

The statements in the previous paragraph are analogous 
to the bundle structures on U2• If one of the hemispherical 
shells in the model of the Klein bottle in Fig. 14 is rotated by 
21T radians it will change orientation sheets as is stated in Fig. 
19. In complete analogy, one can cover the doubly covered 
sphere by four open sets W; (i = 1, ... ,4), that can be consid
ered as the same open sets that were used to cover U2 that 
have been translated along the principal null goedesics to the 
doubly covered sphere at infinity. One can go as far as to 
define transition functions for the orientation bundle as hav
ing the same values as those that were found for U2 in (2.5). 
However, one has the added simplification that one no long
er needs to consider the disjoint nature of some of the inter
sections of the Wi'S. The small sets that are labeled with a 
SUbscript 1 as in ( Wi n Wi) I are not manifested on the dou
bly covered sphere at infinity. The changing of the time and 
spatial orientation sheets at the equatorial junctions is just 
the analog of what was found in Fig. 19 when a tangent two
frame was transported along a curve through the equatorial 
region of the two-surface at r = o. In essence, the geometry 
of the doubly covered sphere is contained in Fig. 19. 

Analogous to the double covering of the Riemannian 
sphere, there is a double covering of the Argand plane as 
indicated in Fig. 27. The shaded regions correspond to null 
geodesics that originate on the future directed sheet at r = 0 
and the unshaded regions to those that originated on the past 
directed sheet. The meridian that is drawn in Fig. 27 and the 
equatorial junction have the same interpretations as those in 
Figs. 19 and 26. 

The tangent space at a point on the doubly covered 
sphere is drawn in Fig. 28. It is a double covering of the 
tangent plane. A rotation designated by the polar angle a 
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Positive orientation sheet Negative orientatian sheet 

FI? 27 .. Th.e doubly covered Argand plane that is obtained by a stereogra
phlc ~roJectl~n of!he.doubly covered sphere in Fig. 26. The shaded region is 
associated With pnnclpai null geodesics that originate on the future directed 
s~eet of space-~ime at r = o. Similarly, the unshaded region is associated 
With the past directed sheet of space-time at r = O. The small circles repre
sent the image of the mouths of the handle of the two-surface at r = O. 

about the base point in the tangent space of 21T radians ro
tates one sheet into the other as indicated by the radial line 
junction between the sheets that are labeled a = 0 in Fig. 28. 
The two sheets of the tangent space correspond to the two 
tangent planes at each point of S 2+ that are induced by the 
double covering. This rotational structure follows from the 
f~ct that rotation in the tangent space corresponds to a rota
tIOn of the two-surface at r = 0 about its symmetry axis, 
where the base point of the tangent space is defined to lie on 
this symmetry axis. The double sheeted nature of the tangent 
space then follows from Fig. 19. Thus one has a double cov
ering of the set of flags for each flagpole. The set of vectors in 
this doubly covered plane when combined with the flagpole 
that passes through the base point of the tangent space de
fines the set of spinorial flags that can be associated with this 
particular flagpole. 

Base states for the spinorialized null flags can be defined 
i~ a straightforward manner. A spin +! state, (~), can be 
gIVen by the north pole of the kout sheet of the doubly cov
ered sphere at infinity with the spinorial flag aligned with the 
demarcated meridian in Fig. 26 (this corresponds to a = 0 
on the positive orientation sheet ofthe tangent space). The 
state - (~) would correspond to the north pole of the k. 
~heet of the doubly covered sphere with spinorial flag poin~
mg along the demarcated meridian on the negative orienta
tion sheet of Fig. 26 (this corresponds to a' = 0 on the nega
tive orientation sheet of the tangent space, where 
a' = a + 21T). It is implicit in this construction that if spin
ors represent spin angular momentum that the angular mo
mentum vector points along the flagpole on the doubly cov
ered sphere [Le., the states (~) and - (~) have the same 
angular momentum vector]. The other base state, spin -! 
or (~), is given by the south pole of the positive orientation 

Tangent space to the positive 
orientation sheet 

Tangent !pace to the negative 
orientation sheet 

FIG. 28. The tangent space of the doubly covered sphere is a doubly covered 
tangent plane. 
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sheet of the doubly covered sphere with the spinorial flag 
pointing in the opposite direction of the demarcated merid
ian at the south pole of Fig. 26 (this corresponds to a = 0 on 
the positive orientation sheet of the tangent space at the 
south pole). Its angular momentum vector is antiparallel to 
that of the spin + ! state. One defines a - (~) state analo
gously to the definition of - (~). 

Penrose has shown that if one takes the complex num
ber,;, which is a coordinate on the Argand plane and signify 
it by a ratio of complex numbers, ; = s 11J, then S and 1J can 
be chosen to transform like the components of the Weyl 
spinor (~) and are defined by a null flag up to a sign.3 The 
reader is referred to Ref. 3 for the details of Penrose's treat
ment as it is too lengthy to be reproduced here. 

Briefly, the analog of what Penrose did with the Rie
mannian sphere can be sketched here for the doubly covered 
Riemannian sphere. One can replace the complex coordi
nate, ;, on the Argand plane by a density ?=;ea = Sea 11Jea' 

where ea represents the line fiber of the trivialization of the 
orientation bundle on each of the four open sets W; defined 
in the discussion following Fig. 26 and in (2.S). Here? can 
be construed as a coordinate on the doubly covered Argand 
plane. It should be noted that this is the minimal number of 
open sets that can be used to cover the doubly covered sphere 
(as is ~ell known one needs two for each sphere). One inter
prets ; on the positive orientation sheet to be 

? = (sei(1/2)a)/(1Jei(1!2)a) _ (~)ei(1I2)a, where 0";;a..;;217', 
(S.la) 

where a gives the rotation angle in the spinorialized flag 
plane on the positive sheet of the doubly covered tangent 
space. Note that if a> 217' the flagpole must be on the other 
orientation sheet of the doubly covered sphere. The base 
point of the tangent space can be determined from Sand 1J by 
(S.6) and (S.7). The density on the negative orientation 
sheet is given by 

? = (Sei(1/2)a)/( 1Jei(1/2)a) _ (~)ei(1/2)a, 

( S.lb) 

or if a' is the angle that is defined on the negative sheet of the 
tangent space then (S.lb) can be written as 

?= (Sei(\/2)a')/( 1Jei(\/2)a,) _ (~) ei(\/2)a', 
(S.lb') 

where 0..;;a..;;217'. 

Consequently, to define the density one needs a global 
definition of a = 0 and a' = O. By the transitive action of 
SU(2) [the rotation subgroup of SL(2,C)] on the set of 
Pauli spinors, every spatial orientation of a spinorialized null 
flag of fixed extent can be obtained by a rotation applied to 
the base state corresponding to the Pauli spin <b). These 
rotations can be described by the three Euler angles t/J, 0, and 
y.20 For the spinorialized null flags the rotation group is 
reparametrized by t/J, 0, and a, the rotation angle in the tan
gent space. Choose a = 0 for the tangent space at the north 
pole to be along the tangent vector that is mapped by the 
exponential map to the demarcated meridian on the positive 
orientation sheet of the doubly covered sphere in Figs. 26 
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and 27. Similarly, the radial line in Fig. 28 that represents 
a' = 0 exponentiates onto the corresponding demarcated 
meridian on the negative sheet. By transitivity, one can de
fine a = 0 for other flagpoles and the associated spinor
ialized flag planes by parallel transporting this tangent vec
tor at the north pole to the tangent space at other points of 
the same sheet ofthe doubly covered sphere. Since a lao and 
a lat/J are an orthogonal coordinate frame (not orthonor
mal) on the sphere (Le., [a laO,a lat/J] = 0), the flagpole 
that is obtained by translating first in the 0 direction then in 
the t/J direction is the same as for the reverse order. Similarly, 
the vector in the tangent space that labels a = 0 is invariant 
under the order of parallel translation on the positive orien
tation sheet minus the south pole. The validity of this claim 
can be seen by the fact that the sphere minus the south pole 
can be thought of as the one to one image of the conformal 
mapping of the sphere into the Argand plane by projection 
from the south pole. The plane is flat, so the translation of 
the vector signifying a = 0 is independent of the path. The 
ambiguity in defining a = 0 at the south pole by the transla
tion of a vector from the north pole arises because the Euler 
number of the sphere is 2. A discussion of the implications of 
X = 2 is given in the analysis of (S.5). There is obviously a 
relationship between this phenomena and the need to inde
pendently define a new base state, (~ ), at the south pole. The 
definition of this state that was given earlier in this section 
depends on differentiating between the various possible 
paths that are available for parallel translation. The unique 
path that was chosen corresponds to a rotation about the y 
axis [coordinates of Fig. 2S and (S.6) and (S.7)] of the 
a = 0 tangent vector of the state (~) by 17' radians to get the 
a = 0 tangent vector for <b) at the south pole [see (S.4) ]. 

If one considers the tangent bundle of the doubly cov
ered sphere as was done for the orientation bundle then one 
can just take the tangent bundle structure that was defined in 
Sec. III to describe this tangent bundle at asymptotic infin
ity. As with the orientation bundle on the doubly covered 
sphere, one can ignore one of the components of the disjoint 
intersections, namely, those of the form (Wi n JJj ) l' The 
remaining transition functions are the same as those in Sec. 
III. The group of the tangent bundle with this covering by 
four sets can be considered to be a four element discrete 
group that is spanned by the transition functions in (3.1S). 
The four group elements are J, P, rotation by 17' and po (rota
tion by 17'). Steenrod shows in Theorem 13.2 of Ref. 8 that 
translation of a fiber along a curve is a unique operation for a 
bundle with a discrete group. Thus, one can relate the a' = 0 
tangent vectors for flagpoles on the negative orientation 
sheet ofthe doubly covered sphere that are obtained by par
allel translating from the north pole of this sheet to the a = 0 
spinorial flags that are similarly defined on the positive ori
entation sheet in a unique way. If one makes the unique 
matching of the parallel translates from both south poles and 
both north poles then one has the global definition of a and 
a' that is desired. 

Penrose shows that from the topology of SO (3,1 ) 
~RP3XlR3, where R3 represents the boosts and RP3 the 
rotations, that one need only to establish the transformation 
laws for spatial rotations and z boosts (toward the north 
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pole) in order to describe all of the Lorentz transformational 
properties as any Lorentz transformation can be decom
posed into a product of these. The rotation law for the spin
orialized null flags can be obtained in the same way that 
Penrose derived them for null flags. 

For a rotation about the z axis of tP radians, one finds 
from the stereographic projection from S 2+ that the coordi
nate in the doubly covered Argand plane transforms as3 

t'=ei1, (5.2) 

from which one concludes that 

O. ) ($) e i(1I2)a(I/I) • 
e - I( 112)1/1 1] 

(5.3a) 

But a ( tP) is actually zero since the matrix by itself is consis
tent with the changing of sheets that is defined by Fig. 19. 
For example, if one has a pure (~) or (~ ) state then a rota
tion about the z axis is just a rotation of the spinorial flagpole. 
The change in a, the polar angle in the tangent plane, is just 
given by the matrix in (5.3a) with the substitution tP-+a. 
Clearly, this description of a as a phase (actually the orbit of 
the one-parameter group that is generated by a, a doubly 
covered circle in the tangent space, is merely being mapped 
to a singly covered circle by a half-angle mapping in this 
identification of a with a phase) describes the changing of 
orientation sheets that is associated with the spinorialized 
flags in a manner that is consistent with the definition of the 
density, t, in (5.1). Since one can decompose any Weyl 
spinor into a linear combination of base states, one can con
clude that the transformation on the doubly covered Argand 
plane induced by rotation about thez axis induces a transfor
mation in C2

, the two-dimensional complex space that is 
spanned by $ and 1], that can be described in matrix notation 
as 

($1]") = (e
o

i
( 112)1/1 0 ) ($) 

e - i(1/2) 1/1 1] . 
(5.3b) 

As stated above, (5.3b) is consistent with the definition 
of the coordinate t given in (5.1). Namely, a rotation of 21T 

"'-
about thez axis causes t to change orientation sheets. Simi-
larly, no matter which direction the flagpole that is associat
ed with a spinorialized null flag points in space, a rotation 
about the direction along the flagpole just rotates the spinor
ialized half-plane. After 21T radians, the spinorialized null 
flag lies on a different sheet of the doubly covered sphere. 
This represents the coordinate independence of this con
struction. Note that (5.3) is inconsistent with the rotational 
properties of Penrose's flags (half-planes) for the states (~) 
and (n. 

For a rotation about the y axis of the Riemannian sphere 
by (J radians, the stereographic projection implies that3 

($') (COS(~(J) 
1]' = sin(!(J) 

- Sin(!(J») ($) . 
cos(~(J) 1] 

(5.4 ) 

This is consistent with the structure of the junction condi
tions between the two sheets of the doubly covered sphere as 
given by (2.5) with the minor modifications that are indicat
ed earlier in this section. By the positions of the junctions and 
Fig. 19 it is implicit that all of the spinorialized null flags of 
the form R z (t/> )Ry «(J)(~) = tP for the parameter ranges 
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(O<t/> <21T, - !1T<(J<31T/2) or (21T<t/><41T, 31T/2<(J<71T/ 
2) all have images on the same sheet of the doubly covered 
sphere. The parameter ranges (O<t/><21T,31T/2<(J<71T/2) 
and (21T<t/><41T, - ~1T<(J<31T/2) have images on the other 
orientation sheet. 

When there is a rotation about the x axis by X radians 
Penrose finds that 

($') (COS(k) 
1]' = i sin(k) 

i Sin(!:y») ($) . 
cos(!r) 1] 

(5.5) 

Spinori_alized null flags that are defined by tP = R z (t/» 
X R x (X) (~ ) can lie on different sheets of the doubly covered 
sphere. The parameter ranges for each sheet are not as easy 
to write as they were for the y rotation. The reason being that 
a rotation about the x axis of the spinorialized null flag that 
corresponds to (~) does not leave the angle of the spinoria
Iized half-plane, a, equal to zero. This results from the topol
ogy of S2. The ambiguity in defining a global a = 0 at the 
south pole of the null sphere by parallel transport that was 
discussed earlier in this section is of the same origin as this 
problem. 

If one rotates the tangent plane with a = 0 at the north 
pole by 1T radians about the y axis, then a = 0 in the tangent 
plane at the south pole in accordance with the global defini
tion of a that was made earlier in this section in conjunction 
with the definition of the spin-! base state. If one now rotates 
the same tangent space at the north pole about the x axis by 1T 
radians, one finds that the tangent space at the south pole has 
been rotated by 1T radians with respect to the plane that was 
obtained by rotation about the y axis. Hence, a = 1T. This is 
due to the singular point structure of the tangent bundle of 
the sphere (the sphere has Euler number, X = 2).7 The fact 
that the singular point at the south pole has degree equal to 2 
is manifested in the fact that the x axis is obtained from the y 
axis by an azimuthal rotation of!1T radians, yet a = 2(!1T) 
= 1T. As a further consequence of the fact that the singular 
point is of degree 2, one can see that as one rotates about 
different axes in the equatorial plane at asymptotic infinity 
by 1T radians then the tangent plane with a = 0 at the north 
pole rotates into a distinct spatial configuration of the tan
gent plane (different a) at the south pole for each one of 
these axes. As a matter of fact, as the axis of rotation in the 
equatorial plane is changed continuously the resultant tan
gent plane at the south pole continuously changes spatial 
configuration. The angle a varies continuously over its en
tire range from 0 to 41T as the rotation axis is varied from 
O<t/><21T (degree 2 nature of the singular point). The con
clusion of this discussion of the degree of the singular point is 
that the parameter range of X that corresponds to different 
orientation sheets for spinorialized null flags of the form 
tP = R z (t/»Rx «(J)(~), though implied by (5.3), (5.4), and 
Fig. 19, will be more complicated than it was for (J. 

The discussion in the previous paragraph accounts for 
the different possible identifications of spinorialized null 
flags that are obtained by rotating (6) about the x axis by X 
radians and the z axis by t/>x radians and the same state that 
can be described by an equivalent representation as a rota
tion by (J radians about the y axis and t/>y radians about the 
z axis. These equivalences are obtained by equating the ac-

Brian Punsly 882 



                                                                                                                                    

TABLE VII. Equivalent representations of spinorialized null flags that are 
obtained by the action of elements ofSU (2). with the indicated set of group 
parameters, on the spin + ! base state. 

(1) 8=0 X=O (2) 8=11' X =11' 

;y ;" =;y ;y I/J" =I/Jy +11' 

(3) 8=11' X=311' (4)8=311' X 11' 

I/Jy I/J" =I/Jy-11' I/Jy ;,. =;y-11' 

(5) 8= 311' X=311' (6)8=211' X=211' 

;y I/J" =;y I/Jy I/J" =I/Jy 

(7) 8=0 X=211' (8) 8=211' - 0 X 

I/Jy I/J" =;y +211' I/Jy I/Jx =I/Jy + 211' 

tions of (5.4) and (55) applied to the state (6). The sets of 
parameters that yield the same spinor are tabulated in Table 
VII. 

As stated earlier, all of the boost transformation laws 
can be deduced by studying the transformation rules for 
boosts along the z axis. To do this, one must look at the 
topology of the product space of spatial orientations of the 
spinorialized null flags. In particular, the component R3 cor
responding to the three boost directions must be incorporat
ed into the construction of the spinorialized null flags. To 
this point, the radius of the doubly covered sphere has been 
fixed (this corresponds to fixing the extent of Penrose's flag
pole in Ref. 3). This was the condition that was needed in the 
study of the effects of rotating the doubly covered sphere. It 
was implicit that one was looking at the null sphere in a 
constant time cross section chosen by Penrose to be t = 1. 
Now, it is of interest to study the effects of time dilation and 
Lorentz contraction. Thus, t cannot be chosen to be the con
stant 1 any longer. 

The projection from S 2+ to the Argand plane at t = 1 
can be described in terms of the embedding of S 2+ in E 3 

(Fig. 25) by the mapping of the rectangular coordinates, 
(x,y,z) -t. Penrose gives this mapping 

x = s~ + 11t. Y = s~ - 11~ , 
SS + 1111 i(ss + 1111) 

z= S~-11~ . 
ss + 1111 

(5.6) 

These are the relations that Penrose used to verify (5.3)
(5.5) with t = st + 1l~ = 1. To look atthe effects of boosts 
one has to make t variable, so mUltiplying (5.6) by 
(2)-112(" + 11~)' one has 

T= (2)-1/2(st+11~)' x= (2)-1/2(S~+11t), (5.7) 

y= -i(2)-J/2(S~-11t), z= (2)-1/2(st-11~). 

A z boost on the spin +! state does not cause a rotation 
or translation of the flagpole on the doubly covered Rieman
nian sphere. Hence, it does not change orientation sheets. 
Similarly, there is no rotation induced in the tangent space. 
One concludes that this spinorialized null flag does not 
change sheets under the action of a z boost. The same is true 
for the spin- ( - !) base state. Consequently. the effect of a z 
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A-

boost on the density t is the same as for the coordinate t on 
the Argand plane that was deduced by Penrose. Define the 
exponential of the rapidity by w = (1 + V)1/2/(l- V)1/2, 

where v is the velocity of the boost along the z direction. 
Then according to Ref. 3 

A- A-

t' = wt, (5.8a) 

(s') = (W1/2 0 ) (s) 
11' 0 w- 1/2 11' (5.8b) 

Note that the + sign has been chosen in front of the 
transformation matrices (5.3)-(5.5) and (5.8) that were 
derived by Penrose up to a sign. It is desired that if the pa
rameter of a transformation is zero then the spinorialized 
null flag should remain unchanged. 

One concludes that to observers at asymptotic infinity 
that the two-surface at r = 0 transforms under Lorentz 
transformation as if it were a spinorialized version of Pen
rose's null flag. Penrose shows, as was basically reproduced 
here, that these transform as a Weyl spinor under the action 
ofthe group SOC 3,1). It should be noted that there was an 
inequivalent normal bundle (and therefore tangent bundle) 
that exists over U2 that was defined at the end of Sec. III. 
This results in an inequivalent construction of the doubly 
covered sphere at asymptotic infinity. The construction is 
totally analogous to what is done here and is left to the read
er. One can conclude that the two-surface at r = 0 actually 
transforms as a direct sum of two inequivalent Weyl spinors, 
a four-spinor, as viewed from asymptotic infinity. Since 
there are only two inequivalent spinor representations of the 
Lorentz group [i.e., fundamental representations of 
SL(2,C)], the direct sum must be as for the Dirac spinor, a 
spinor representation of O! (3,1). The vertical arrow is used 
to represent the future directed component of 0(3, I) (the 
doubly covered sphere at asymptotic infinity is future direct
ed). The manner in which the direct sum is made and its 
physical realization depends on the representation of the 
spinor algebra that is implemented. 

The spinorial nature can be thought of as arising from 
three things. First, the natural mapping of the fibering of the 
two-surface at r = 0 by principal null congruences and their 
integration to the null sphere at asymptotic infinity. Second, 
the nonorientability of the two-surface at r = O. Also, the 
quadratic branch point nature of the ring singularity, which 
along with the nonorientability of U2 is manifested in the 
tangent space at every point of the doubly covered null 
sphere at asymptotic infinity. 

The sign ambiguity in Penrose's null flags is resolved 
here by the obstruction to trivializing the bundle of principal 
null congruences at their points of "origin" on the two-sur
face at r = O. It is the component of these null geodesics in 
the normal space which experiences the obstruction. The 
fact that the two-surface at r = 0 turns space-time inside out 
on itself gives rise to the obstruction and therefore to the 
spinor structure associated with the normal bundle of this 
surface as viewed from asymptotic infinity. 

The rotational properties of the two-surface have an in
teresting implication for the hypersurface at r = O. The two
surface is rotating as a function oftime. T~is induces a phase 
transformation on the spinorialized null flag by (5.3). It was 
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shown in Ref. 1 that the two-surface at r = 0 appears to 
stationary observers to be a sphere of radius a that is rotating 
with a frequency w such that vt/J = wa sin(O) = c sin(O). On 
the equator this velocity equals c. It is this equivalence with c 
that forces space-time to knot and twist along the equatorial 
region so as to give the two-surface a topology other than S 2 

(a Klein bottle). The rotation matrix for azimuthal rota
tions is given by (S.3). Choose the spatial configuration of 
the two-surface at r = 0 to coincide with the spinorialized 
null flag that is represented by the spino! base state. The 
azimuthal angle of rotation as a function of time is 
f/J(t) = wt, so 

t/J+1/2(t) = e i(1/2)wtt/J+1/2(t = 0) (S.9a) 

= ei( t/2)et la (~) • (S.9b) 

For the sake of argument, choose the component of the an
gular momentum of the source about its symmetry axis to be 
fI/2, then it is also fI/2 about the z axis. Therefore, a = fI/ 
(2mc). This allows (S.9) to be rewritten in the provocative 
form 

t/J+1/2(t) = ei(mc'/fi)t (~). (S.lO) 

Similarly, for the spin down state (S.3) implies the fol
lowing effect of rotation: 

t/J-I/2(t) = e- it/J(t)/2t/J_I/2(t= 0) . (S.l1a) 

Since the spin down state has been rotated about the y axis by 
1T radians with respect to the spin up state, f/J (t) = - wt and 

.1. (t) = ei(mc'lh)t (0) 
'f/-1/2 1 . (S.llb) 

By the structure of the spinorialized flag plane any spatial 
configuration of the two-surface at r = 0 will have this same 
time dependence induced by its rotation as viewed in the 
stationary frames at asymptotic infinity. 

The four-spinor nature of this source for the Kerr geom
etry and the quantum wave nature that is implied by (S.l 0) 
and (S.l1) makes one interested in the physical interpreta
tion of this source. If it were to represent a lepton on some 
level then there would have to be an electric charge as viewed 
from asymptotic infinity. One is led to Wheeler's description 
of electric charge as resulting from worm holes or handles on 
space-time. 17 Recall that there is a handle in this geometry 
on the two-surface at r = 0 (see Fig. 22). The fact that the 
handle needed to be of infinitesimal extent in order to get the 
desired geometry might be consistent with the fact that the 
handle's physical dimension might be on the order of the 
Planck length, 10-33 cm. It would be interesting to speculate 
as to whether there is any connection between the geometry 
that is described in this paper and Wheeler's notion of elec
tric charge. 
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APPENDIX: THE NONORIENTABLE GAUSs-aONNET 
THEOREM 

This Appendix develops a construction of a Gauss-Bon
net type of integral for a nonorientable two-dimensional fi
ber bundle. The Euler characteristic modulo 2 is equated to 
the integral of a density (for a discussion of densities see Ref. 
7 or 21) modulo 2. 

The description of densities that one needs in this dis
cussion depends on their interpretation as elements of a 
twisted cohomology module. A twisted cohomology is a gen
eralization of De Rahm cohomology that is specifically de
signed to deal with nonorientable fiber bundles and mani
folds (see Bott and Tu, Chap. 7).7 In the orientable case, the 
twisted De Rahm complex has elements that are differential 
forms and the twisted cohomology is the ordinary De Rahm 
cohomology. For nonorientable manifolds, the elements of 
the top twisted De Rahm complex are densities. 

A twisted De Rahm complex, 0* (M,E) is given by dif
ferential forms on a manifold, M, with values in a vector 
bundle, E. On an open set Ua on Man E-valued q-form can 
be w~tten locally as 1:i Wi ® e~, where Wi is a q-form on Ua 

and e~ is a vector in E. For a flat bundle (i.e., one in which 
the transition functions are locally constant, or equivalently, 
de~ = 0) Bott and Tu show that the notion of a twisted co
homology module makes sense.7 The line bundle is obvious
ly a flat bundle. Define L to be the R I or line bundle on the 
manifold M of dimension n that is associated with the orien
tation bundle (as defined in Sec. II). Here Hn(M,L) is the 
cohomology of densities. This module is of interest because 
one can prove a version of Stoke's theorem for nonorientable 
manifolds in terms of densities.7 This section utilizes ele
ments of the twisted cohomology of the form w ® ea 

eH*(M,L), where well*(M) and eaERI. 
In order to obtain the nonorientable version of the 

Gauss-Bonnet formula, the construction of a twisted global 
angular form is desirable. This will be done by essentially 
rewriting the construction of the global angular form that is 
given in Chap. 6 ofBott and Tu. 7 Assume that the rank of the 
bundle E is 2 and the base manifold, M, is covered by open 
sets {U a}. The case of interest in this paper has a pseudo
Riemannian connection on the normal bundle. However, it 
was discussed in Sec. III how a Riemannian s.tructure can be 
put on the fiber. Define EO as the complement of the zero 
section of E. With the Riemannian connection, one can de
fine polar coordinates ra and Oa in the fiber andxl,. .. ,xn (for 
more generality assume that the dimension of the base mani
fold is an arbitrary number, n, not necessarily 2 as is the case 
in this paper) are coordinates on U a' Then r a , 0 a , 

* * d' t EO h . h . 1T X I, ... ,1T Xn arecoor lOa eson IUa' w ere1Tlst eproJec-
tion to the base space in the bundle and the pullback is de
noted by 1T*. 

On the overlap of two open sets of the open covering of 
the base manifold the angular coordinates 0 a and 0 p in gen
eral differ by a rotation angle. If ea = ep , then it appears in 
the a-coordinate system that the ,B-coordinate system is ro
tated by 

(Al) 

on Ua n Up. If ea >Fep, then in the a-coordinate system Op 
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appears as - Op + 1r (different orientations imply that 
there must be a reflection of a circle through a diameter that 
relates the two coordinate systems as well as a possible com
position with an orientation preserving rotation). The 
change of coordinates on the intersection can be given by the 
following "rotation": 

1r*~a{3 = - (Op + Oa) + 1r, O<~a{3<21r. (A2) 

Equations (A 1) and (A2) can be combined in one expres
sion by rewriting and implementing twisted cohomology. 
Let ea = 1 and ep takes on the numerical values + 1 or - 1. 
Define Ja{3 as the sign of the Jacobian determinant of the 
coordinate transformation that relates Ua and Up. Then 
even if ea is not 1 it is always true that Ja{3 = ea ·ep. Define 
~a{3 = Jap t/Ja{3' where t/Jap is a function on Ua n Up. Then 
(AI) and (A2) imply the combined relation 

Tr*~a{3 = Opep - Oaea + e( - Jap )1r, O<~ap <21r , 

(A3) 

where e is the step function that has the value of 1 for posi
tive argument and is zero otherwise. 

It is straightforward to verify the condition on the triple 
intersection Ua n Up n Uy 

~a{3 + ~py - ~ay = 2m, zEZ, (A4) 

for the four possible situations 

(1) ea = 1, ep = 1, ey = - 1 ; 

(2) ea = 1, ep = - 1, ey = 1 ; 

(3) ea = 1, ep = - 1, ey = - 1 ; 

(4) ea = 1, ep = 1, ey = 1 . 

Thus, in general the {~a{3} do not satisfy the cocycle condi
tion [the right-hand side of (A4) is not necessarily zero]. 

Let py be a partition of unity subordinate to tht;,. cover 
{Uy}' Define Sa to be a one-form on Ua and Sae"", = S is an 
element ofthe twisted complex over Ua, SP' and SP = spep 
are defined similarly on Up by 

A A 

21rSP = Ipy dt/Jpy = Ipy Jpy dt/Jpy . 
y y 

Then by differentiating (A4) one has 
A A A 

(1I21r)dt/JaP = SP - Sa . (AS) 
A A A 

Consequently, dSa = dsp. Therefore, the ds a can be pieced 
together to give a global twisted form eeH 2 (M,L). The 
twisted form, e, will be called the twisted Euler class of the 
bundle. 

Also by (A3) and (AS) 
A A 

(1I21r)dOa ea - 1r*Sa = (1I21r)dOp ep - 1r*Sp (A6) 
A 

on E fuan Up' Thus, the twisted forms (1I21r)dOp ep A- 1r*Sp 
can be pieced together to form a global twisted form '" on EO. 
The twisted one-form ~ 1 (E 0,L) will be called the twist
ed global angular form. Note that the restriction to each fiber 
is ± (1I21r)dO and 

(A7) 

By proposition 11.14 of Bott and Tu, one can form a 
"partial" section of a bundle which has the orthogonal group 
as its structure group. This means that one can form a global 
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section everywhere on M except in the neighborhood of (a 
finite number of) the singular points {YI, ... ,Ym}' Look at the 
section, s, near one of the singular points Y;. One can choose a 
punctured neighborhood, D~, sufficiently small so that it is 
diffeomorphic to a punctured open ball of radius r in Rn (the 
origin,y;, is removed) andEis trivial over this set. Choose a 
covering {Uy } of M so that one of the sets covers D~, provid
ing a local orientation on D ~ and its boundary aD ~ s!s 7 - I. 

The orientation can be chosen on sn- 1 so that EID~ S!D ~ 

XS7- 1 is an orientation preserving isomorphism.7 The lo
cal degree of the section, s, at Y; is the degree of the composite 
map7 

_. s _ p 

a'D' E =DiXS n - 1 sn-I 
r --+ ID~ r -+ , (AS) 

where p is the projection. 

Define M, to be M minus m (one for each singular 
point) such balls of radius r then 

r e = lim r e = lim r s*1r*e, JM r_O JM, r-O JMr 
since s is a global section over M,. By (A 7) 

r e = - lim r s* d~ JM ,-0 JM, 

(A9) 

then an application of Stoke's theorem for densities yields 

r e = -lim r s*~ . (AW) JM ,_0 JaM, 
Let u be a generator of S n - I. If one defines u = uei and 

n = 2, then by the common restriction to the same generator 
on each fiber, p*u is cohomologically equivalent in 
H*(EID~,L) to~. Equivalently, 

~ -p*u= df' (All) 

forsome (n - 2) twisted form, f', in n*(EID~,L). For small r 

one has 

s*~ - s*p*u = s* df'. (AI2) 

Another application of Stoke's theorem for densities yields 

r _ s*~ = r _ s*p*u. 
JaD~ JaD~ 

(A13) 

By comparing (A 13 ) and (AS), the integral in (A 13 ) is 
equal to the local degree of the section, s, aty; modulo a sign 
since u = ± u. On one of the open sets of the covering of M 
about one of the singular points (it is assumed that the cover
ing is chosen so that no open set contains more than one 
singular point) the orientation bundle can be trivialized so 
that u = u. Note that if u = - u it corresponds to a reflec
tion of a circle about a diameter as mentioned in the discus
sion of (A2) for the two-plane bundle. For a nonorientable 
surface, one cannot trivialize the orientation bundle over M, 
unless the singular points of the orientation bundle, 
{z I" •• ,z k }, are a subset of the singular points of the two-plane 
bundle, {YI, ... ,ym}' If this condition is not true then 
u = - u at some (at least one) of the other singular points. 

Since aD ~ has an opposite local orientation to aM" one 
has 
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or by (A9) and (AlO) 

i e= {X(E) + an even number, if{zl, ... h} ct {YW .. ,Ym}, 

M X(E), if{zl,· .. ,zk} C {YI, ... ,ym}' 
(AI4) 

It is always true f M e mod 2 = X(E) mod 2. 
An obvious example of (AI4) is the orientable Gauss

Bonnet theorem. Since the dimension of the fiber was chosen 
to be two, if one can form a vector cross section up to a 
reflection in the fiber at some of the singular points 
(q = - (j at some of the singular points), then one has a 
vector section modulo a reflection, a line section. For the 
nonorientable case, by the construction leading to (AI4), 
the existence of a line section implies that f M e = 0 mod 2. 
In order to see why this must be true one can make the fol
lowing observations. The integral of the twisted Euler class 
over M is independent of the covering of M by open sets. 
Choose the cover of M, {Uy}, to include small sets {uJ 
C {Uy } that are disjoint from each other and each one con

tains exactly one of the singular points, Y;. 
In this analysis, the vector bundle is studied in terms of 

degrees of singular points by equating the bundle to a circle 
bundle.7 One can consider the line bundle as a bundle of 
diameters ofthese circles that are associated with the vector 
bundle. If one can trivialize the vector bundle over Mr then it 
is possible to trivialize the line bundle over Mr' 

If the absolute value of the degree ofthe singular point Y; 
isk; then cover U; by 2k; sets U:, t = 1, ... ,2k; such that each 
U: contains Y; and UtU: = U;. Choose the U:'s small 
enough so that one can trivialize the line bundle on each of 
the sets U: separately for all i and t. Choose r small enough 
so that Mr n U; is topologically an annulus. The intersec
tions Urn U r have only one connected component. The 
geometry of this situation is indicated for a singular point of 
degree of absolute value equal to 1 in Fig. 29. The sets have 
been chosen so that the transition functions for the line bun
dle on the intersections, {U; - Ut,U:';t'¥=t}nMr , are 
+ 1. This can be done for the following reason. If one tran

sports the circle fiber about aD ~ then the circle will execute 
k; rotations (if the absolute value of the local degree of s at Y; 
is k;) upon completion of the circuit. By choosing 2k/ sets, 
one can isolate a half of a rotation in each U: nMr • This 
allows one to match the trivialization on each U: to that on 
Mr in such a way that the information on the degree of singu
larity is reflected in the intersections of the U:'s among 
themselves. There are k; (2k; - 1) such intersections. Thus, 
one must specify k; (2k; - 1) transition functions. It is easy 
to convince oneself that k ~ of these functions have minus 
signs and k; (k; - 1) will have plus signs. Thus, a singular 
point of odd degree will have an odd number of minus signs 
in the set of transition functions for this covering. If the sin
gular point is of even degree there will be an even number of 
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minus signs. 
The integral ofe over M is also independent of the vector 

field that is used to compute this number (i.e., it is indepen
dent of the trivial vector bundle that is chosen on Mr ), For 
example, the total degree of the singular points of a vector 
field over S 2 can be thought of as arising from one singular 
point of degree 2 at the south pole or two singular points of 
degree 1 placed at both poles. Choose the vector field on M 
that is used to compute f Meso that the degrees of the singu
lar points have absolute value equal to unity. The manifold 
minus these points will still be called Mr. 

Define a closed curve that passes through each singular 
point exactly once and through each of the two sets that 
cover these singular points of degree of magnitude 1 (see Fig. 
29) exactly once. By the previous statements in this discus
sion, the transition function on the intersection of each of 
these two set coverings of a neighborhood of a singular point 
must be negative since the local degree is odd. Thus, if one 
can trivialize the line bundle over this closed curve then 
1:; ± (local degree of sat Y;) is an even number. One con-

FIG. 29. The pointy, is a singular point with a local degree of magnitude 1. 

Here M r , indicated by the shading, is a large manifold that extends far be

yond the boundaries of the illustration. The open set U: is indicated by an 
array ofhorizontaIlines and U: by the vertical lines. 
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cludes that if there exists a global line section over M that 
this sum must be even. Then by (A 14 ), the existence of a line 
section over M implies that S M e = 0 mod 2. One concludes 
that X(E) mod 2 = 0 ifthere exists a line section ofthe two
plane bundle. This is a strange theorem to prove for a two
dimensional fiber as it was shown that one can define a 
Gauss-Bonnet theorem without densities to find the Euler 
number for a nonorientable bundle in this case (see the be
ginning of Sec. III). For the purposes of this paper the inte
gral in that treatment was undefined. One could construct a 
normal line section and by the results of this Appendix, 
X(N) mod 2 = O. 

Another advantage of this construction is that a Gauss
Bonnet theorem like (A 14) for twisted cohomology ele
ments may be extendible to higher-dimensional nonorienta
ble fibers. From this discussion, if e can be found no matter 
what the dimensions then S M e mod 2 gives the Euler char
acteristic mod 2. For the orientable case the Euler class, e, 
can be determined by the Chem-Weil homomorpism. One 
defines differential forms with values in a group. This group 
is SO (n) for the Euler class. The homomorphism does not 
work for O(n).22 Hence, there is no nonorientable Gauss
Bonnet theorem. This author believes that it can be proved 
that if one defines elements of the twisted cohomology that 
are associated with the line fiber of orientation as was done 
here and gives them values in SO (n), then one can proceed 
in complete analogy to the Chem-Weil homomorphism to 
obtain e. This results in a Gauss-Bonnet type of theorem for 
nonorientable bundles in the form 

fM e mod 2 = X(B) mod 2 . 

887 J. Math. Phys., Vol. 28, No.4, April 1987 

'B. Punsly, J. Math. Phys. 26,1728 (1985). 
2R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265 (1967). 
3R. Penrose and W. Rindler, Spinors and Space-time (Cambridge U. P., 
New York, 1984), Vol. I. 

4B. Carter, Phys. Rev. 174, 1559 (1968). 
sO. Hilbert and S. Cohn-Vossen, Geometry and the Imagination (Chelsea, 
New York, 1952). 

6W. S. Massey, Algebraic Topology: An Introduction (Harcourt, New 
York, 1967). 

7R. Bott and L. Tu, Differential Forms in Algebraic Topology (Springer, 
New York, 1982). 

BN. Steenrod, The Topology 0/ Fiber Bundles (Princeton U. P., Princeton, 
NJ,1974). 

9J. Milnor and J. Stashelr, Characteristic Classes (Princeton U. P., Prince
ton, NJ, 1974). 

wH. Whitney, "On the topology of dilrerentiable manifolds," Lectures in 
Topology (University of Michigan, Ann Arbor, 1941). 

"R. P. Kerr and A. Schild, "Some algebraically degenerate solutions of 
Einstein'S gravitational field equations," presented at the American 
Mathematical Society Symposium, New York, 1964. 

12S. W. Hawking and G. F. R. Ellis, The Large Scale Structureo/Space-time 
(Cambridge U. P., New York, 1977). 

13R. Greene (private communication). 
14R. Stem (private communication). 
ISLoring Tu has indicated to this author in a letter that the nonorientable 

Gauss-Bonnet theorem formulated in terms of densities is not in any 
mathematical literature that he has seen and may be of interest to the 
mathematical community. 

16g. Chern, An. Acad. Brasil. CiSne. 35,16 (1963). 
17C. Misner, K. Thome, and J. Wheeler Gravitation (Freeman, San Fran

cisco, 1973). 
IBM. Green (private communication). 
19M. J. Greenberg and J. R. Harper, Algebraic Topology: A First Course 

(Benjamin/Cummings, Don Mills, Ontario, 1981). 
2°H. Goldstein, Classical Mechanics (Addison-Wesley, Menlo Park, CA, 

1981). 
21F W. Warner, Foundations of Differentiable Manifolds and Lie Groups 

(Scott and Foresman, Glenview, IL, 1971). 
22J. L. Dupont, Curvature and Characteristic Classes (Springer, New York, 

1978). 

Brian Punsly 887 



                                                                                                                                    

Computer-aided study of a class of Riemannian space-times 
M. J. Rebouc;as 
Centro Brasileiro de Pesquisas Ffsicas, Rua Dr. Xavier Sigaud, l50-Urca, 22290 Rio de Janeiro-RIo Brazil 

J. E. Aman 
Institute of Theoretical Physics, University of Stockholm, Vanadisviigen 9, S-11346 Stockholm, Sweden 

(Received 23 September 1986; accepted for publication 26 November 1986) 

The Riemannian Gooel-type manifolds are examined in the light of the equivalence problem 
techniques by using algebraic computing. The conditions for space-time homogeneity of a 
Riemannian manifold with a Godel-type metric are derived, generalizing previous work on this 
subject matter. A classification of the Godel-type Riemannian manifolds based on the two 
relevant parameters m and .n is formulated. It is shown that apart from the m 2 = 4.n2 case 
they are all Petrov type D with a five-parameter group of motions. The special m2 = 4.n2 

manifold is shown to be conformally ft.at and to admit a seven-parameter group of isometries. 
An algebraic classification of the Ricci spinor of all Godel-type Riemannian manifolds is 
discussed. Possible sources for these space-times are examined. A generalization of the 
Rebou~as-Tiomno theorem on Godel-type manifolds is given. 

I. INTRODUCTION 

The arbitrariness in the choice of coordinates in general 
relativity gives rise to the problem of deciding whether or not 
two Riemannian space-times, given explicitly in terms of co
ordinates, viz., 

d$l = gaP dxa dxfi , 

d$l = gaP dXa dJ!l , 

(1.1 ) 

( 1.2) 

are locally the same. This is the so-called equivalence prob
lem (see, for example, Refs. 1-5). 

Most relativists' first approach to cope with that prob
lem would probably be through scalar invariants such as 
R a a' RaP RaP , Rapyp;crRaPyp;cr, etc. However, this attempt 
cannot work so long as there exist curved space-times in 
which all scalar invariants vanish-indistinguishable there
fore from the flat space-time of special relativity. 

On the other hand, from the fact that any metric can be 
written locally in the form of a Taylor series whose coeffi
cients are functions of Rapyp and its covariant derivatives, 
one may infer that what does matter in fact are the Riemann 
tensor and its covariant derivatives. Actually, the equiv
alence problem can be reduced to that of finding out whether 
the finite set of equations 

R ABCD = R ABCD , 

RABCD;E, = RABCD;E, ' (1.3 ) 

RABCD;E, . . 'Ep = RABCD;E, . . 'Ep , 

is consistent or not. Here the curvature tensor as well as its 
covariant derivatives are referred to a canonically chosen 
frame. 

It is worth noting that in calculating the derivatives of 
the Riemann tensor one can stop as soon as one reaches a 
step at which the pth derivatives (say) are algebraically ex
pressible in terms of the previous ones, since further differen
tiation will not yield any new piece of information. 6 Actual
ly, if the pth derivative is expressible in terms of its 
predecessors, for all k > P the k th derivatives can all be ex
pressed in terms ofOth, 1st, ... , (p - 1 )th derivatives. 

Handling distinctively space-time coordinates x a
, and 

tetrad rotation parameters SA , Karlhede2 refined upon the 
equivalence problem: rephrased it in the language of spinors, 
pointed out that the maximum number of derivatives needed 
for a complete characterization of a given space-time de
pends on the corresponding Petrov type, and discussed how 
to fix the frame for each Petrov type in a canonical way. 

Karlhede's procedure was implemented using the com
puter algebra system SHEEP/'s at first for vacuum, by 
A.man.9

•
10 More recently, programs to extend the treatment 

to the nonvacuum case have been written by MacCallum, 
Joly, and A.man and are described in Refs. 3 and 11-13. 

In 1949 Godel14 presented a cosmological solution of 
Einstein's equations of the form 

ds2= [dt+H(x)dy]2_D2(X)dy2-dx2-dz2 , (1.4) 

which is known as a Godel-type metric. The Gooel solution 
and its energy-momentum tensor can be given by 

and 

H = emx
, D = emx/.,fi, (1.5) 

Tp.y = pVp. Vy, V p. = ~p.o, 
Kp = - 2A = m2 = 2.n2 

, 

( 1.6) 

( 1.7) 

where K is the Einstein constant, Vp. is the ft.uid four-veloc
ity, .n is the rotation of matter, and m is a constant. 

Despite its various striking properties, the cosmological 
solution discussed by Godel has a well recognized historical 
(and even philosophical) importance15 and has to a large 
extent motivated the investigation on rotating cosmological 
space-times. Particularly, the search for rotating Godel-type 
models (1.4) has received more attention in recent years, 
and the literature on those kinds of space-times is fairly large 
today. 16 

However, apart from GOdel's paper, the problem of 
space-time homogeneity of Gooel-type Riemannian mani
folds was considered only in 1980 by Raychaudhuri and 
Thakurta. 17 They found the necessary conditions for a Rie
mannian manifold to be homogeneous in space and time 

888 J. Math. Phys. 28 (4), April 1987 0022-2488/87/040888-05$02.50 @ 1987 American Institute of Physics 888 



                                                                                                                                    

(hereafter called ST homogeneous). 
Two years later Rebou~as and Tiomnol6 proved that the 

Raychaudhuri-Thakurta conditions are also sufficient for 
ST homogeneity of Gooel-type Riemannian manifolds. 
However, not only Raychaudhuri and Thakurta but also Re
bou~as and Tiomno have explicitly or implicitly restricted 
their study to the class of time-independent Killing vector 
fields. Perceiving this restriction in both papers (Refs. 16 
and 17) Teixeira et al.18 extended these investigations so as 
to include the time-dependent isometries. Nevertheless, 
their study is yet limited in that they have used equations 
[Eqs. (19)-(21)] borrowed from Ref. 16, obtained under a 
restrictive assumption on the form of the Killing vector 
fields. 

In the light of the equivalence problem techniques, as 
formulated by Karlhede2 and embodied in a suite of comput
er programs (CLASSI I9

) written in SHEEP by Aman, Mac
Callum, and JOly,3,l1,13 we examine all Riemannian Gooel
type manifolds. The necessary and sufficient conditions for a 
Gooel-type Riemannian manifold to be ST homogeneous are 
derived without assuming any limiting hypothesis on the iso
metries. The Rebou~as-Tiomno major results are recast in a 
more general context. The Godel-type ST-homogeneous 
Riemannian manifolds are shown to be characterized by two 
parameters m and 0.: identical pairs (m2,0.) correspond to 
equivalent manifolds. A classification of all Godel-type Rie
mannian space-times based on these parameters is present
ed. We also show that apart from the m 2 = 40.2 case they are 
all Petrov type D and have a five-parameter maximal group 
of motion (G5 ). The special case m2 = 40.2 is shown to be 
Petrov type 0 and to admit a G7 of isometries, in agreement 
with the results of Teixeira et al. 18 obtained through a proce
dure completely different from ours. The particular case 
m = 0. = 0 is shown to be nothing but the fiat space-time. As 
for the Segre type of the Ricci tensor we prove that, in gen
eral, it is [1,1 (11)] unless m2 = 20.2 or m2 = 40.2

• The 
m2 = 20.2 case corresponds to the Gooel solution and is of 
the algebraic Segre type [1,( 111)] whereas the m2 = 40.2 

case is shown to be ofSegre type [( 1,11) 1 ]. Possible sources 
of Godel-type metrics are discussed. The degenerated Go
del-type metrics (0. = 0, m2#0) are also studied: they ad
mit a G 6 of motions and are of Segre type [ ( 1,1 ) 11 ]. There 
emerges from our study a generalization of a theorem proved 
in Ref. 16. 

Our major aim in the next section is to present a brief 
summary of important practical results and prerequisites on 
the equiValence problem required in Sec. III, to set our 
framework, define the notation, and make our text to a cer
tain extent self-contained. Detailed and quite good reviews 
on that subject can be found in Karlhede,2 MacCallum,3,5 
and Ehlers.4 

In Sec. III we state, prove, and discuss our main results. 

II. PRACTICAL PROCEDURE AND PREREQUISITES 

An important practical point to be considered, once one 
wishes to test the equivalence of two metrics, is that before 
attempting to solve Eqs. (1.3) one can extract and compare 
partial pieces of information: the subgroup of Hq ofG, un
derwhich thesetRq = {RABCD,RABCD;E, , ... , RABCD;EI" .. E) is 
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invariant, and the number tq of functionally independent 
functions of space-time coordinates contained in R q • They 
must be the same (at each q) if the matrics are equivalent. 

The procedure for comparing two metrics which results 
from the above considerations is as follows. 

(1) Letq = O. 
(2) Compute Rq . 
(3) Find the set of frame transformations under which 

Rq is invariant (isotropy group Hq). 
(4) Fix the frame up to Hq by choosing a canonical 

form for Rq and find tq. 
(5) If tq = tq_ 1 and Hq = H q _ l , stop (let us denote 

such a q by p). Otherwise, increment q by 1 and return to step 
(2). 

To compare two space-times we first test if they have the 
same tq and Hq for each q up to p. If they differ, so do the 
metrics. If not, it is necessary to check the consistency of 
Eqs. (1.3). 

The isotropy group of each space-time will be Hp and 
the group of motions will have dimension r given by 

r=4-tp +dim(Hp) ' (2.1) 

acting on an orbit with dimension 

d=r-s=4-tp , 

where 

s = dim(Hp)' 

(2.2) 

(2.3) 

It is worth emphasizing that although the equivalence 
problem is couched in terms of equivalence of two metrics, 
by the above procedure we actually compute one invariant 
characterization of each metric and at the end of this proce
dure in addition to tq'S and Hq's we shall have a number of 
consequent data as, for example, the dimension of the iso
metry group [given by (2.1)], the Petrov type of the Weyl 
tensor, and the Segre type ofthe Ricci tensor.20 

Particularly stimulated by the simplicity of the Petrov 
classification in spinorial language, Karlhede, rather than 
using frame as such, rephrased the equivalence problem in 
terms of spinor equivalents: 'I/IABCD (Weyl spinor), ;ABCb 

(Ricci spinor), A = R /24 (Ricci scalar), and their covar
iant derivatives. He has also prescribed a way offixing (as far 
as possible) the frame for each Petrov type. For Petrov type 
I, for example, a canonical frame is fixed by demanding that 
the nonvanishing components of the Weyl spinor 'I/IA are 
such that '1/11 = '1/13#0, '1/12#0, with Re['I/Itl>O. 

An important point to be taken into account when one 
needs to compute derivatives of the curvature tensor is that 
they are interrelated by the Ricci and Bianchi identities. It is 
therefore of importance to be able to single out a set of quan
tities which are algebraically independent and from which 
the Riemann tensor and its covariant derivatives are obtain
able by algebraic operations. Penrose21 showed that for 
vacuum and electrovacuum space-times only the symme
trized spinor derivatives of the Weyl and Maxwell spinors 
are required. However this result does not hold for the gen
eral case. Recently MacCallum and Aman22 have general
ized Penrose's result stating that one must instead take a 
large set of components, which for the qth derivative of the 
curvature can be taken to be (i) the totally symmetrized 
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spinor qth derivatives of the Weyl and Ricci spinors, and the 
Ricci scalar, viz., 

V~!V~· . 'V~)"'MNPQ) , (2.4) 

V(XVt .. 'VzcI> PQ) 
(A B C MN) , (2.5) 

V~!V~· . 'V~~A, (2.6) 

together with (ii) for q> 1, the totally symmetrized 
(q - 1) th derivatives of 

XDEFW = Vf.,"'CDEF , 
i.e., 

V(XVt .. 'VzX IV) (2.7) (A B C DEF) , 
and (iii) for q>2, the d' Alembertian of all quantities used at 
the (q - 2)th step, viz., 

VAxVXAQ, (2.8) 

where Q stands for a generic quantity at the (n - 2)th step. 
To close this section we remark that in the CLASSI imple

mentation of the above results, used in the next section, a 
notation similar to that adopted for", A and «PAil by New
man-Penrose is employed. In this notation the indices are all 
subscripts, components are labeled by one dotted and one 
undotted index whose numerical values are the total number 
of corresponding spinor indices. Thus, for example, one has 

V.I. -D.I. .1. VX .1, ABC D E-
'f'20 = 'f'20 = 'f'(1000;I)O = (A 'f'BCDE) t L 0 0 0 Ox' 

(2.9) 

where the pair LA ,OB constitutes an orthonormal spinor ba
sis. 

III. HOMOGENEOUS Gc)DEL-TYPE METRICS: RESULTS 
AND DISCUSSIONS 

Let us state from the beginning our general setting. 
Throughout this section we shall consider a four-dimension
al Riemannian manifold M, endowed with a Gooel-type 
metric (1.4). 

For arbitrary functionsH(x) andD(x) the Godel-type 
metrics are Petrov type I. Accordingly the null tetrads tVA 

which turn out to be appropriate (canonical) for our discus
sions are 

tV°= (lI{i)(dt+Hdy+dz), 

tV
l = (lI{i)(dt + H dy - dz) , 

tV
2 = (lI{i)(Ddy-idx), 

(J)3= (lI{i)(Ddy+idx). 

(3.1) 

By using this basis the Gooel-type line element ( 1.4) may be 
written as 

ds2 = 2«(J)O(J)1 - (J)2tV3 ) • (3.2) 

It is worth mentioning that, not only the Petrov type but 
also the canonical frame were obtained by interaction with 
CLASSI, starting from one arbitrary null frame and bearing in 
mind Karlhede's results on how to fix the frame for a Petrov 
type I metric. 

Now using the suite of SHEEP classification programs 
(CLASSI) referred to in the Introduction one finds 
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"'1 = "'3 = - i(H'ID)' , 

"'2 = HD" ID - (H'ID)2] , 

«P06 = «P22 = i(H'ID)2, 

«Poi = «P12 = i(H'ID)' , 

«Pli = ![i(H'ID)2 - D" ID ] , 

A= --b[D"ID-!(H'ID)2], 

(3.3) 

(3.4 ) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

where the prime denotes derivative with respect to x. 
For ST homogeneity from Eq. (2.2) one must have 

tp=O, (3.9) 

that is, the number offunctionally independent functions of 
space-time coordinates contained in the set Rp must be zero. 
Accordingly, the spinor quantities "'A' cI> Ail, and A must be 
constant. Therefore from Eqs. (3.3 )-( 3.8) we conclude that 
for ST homogeneity it is necessary that 

H'ID = const=2.o, 

D " ID = const=m2 , 

(3.10) 

(3.11 ) 

where a notation similar to that of the Rebou~as and Tiomno 
paper16 is used. 

The above necessary conditions are also sufficient for ST 
homogeneity. Under those conditions the Weyl and Ricci 
spinors and the Ricci scalar reduce to 

"'2 = m2/6 - ~.o2, (3.12) 

«P06 = «P22 = !.o2 
, 

«P1i = i .o2 - (m 2/4) , 

A=nc.o2 - m2 ) . 

(3.13 ) 

(3.14) 

(3.15) 

We group the Gooel-type Riemannian manifolds, ac
cording to the relevant parameters m and .0, into three 
classes: 

(i) m2 # 4.02, m,.o#o, 

(ii) m2 = 4.02, m,.o#o, 

(iii) m2 #0, .0 = O. 

We remark that the particular case m = .0 = 0 is not 
included in our study inasmuch as, from Eqs. (3.12)
(3.15), it is obviously the fiat space-time. 

We proceed by carrying out the procedure of Sec. II for 
each class of Godel-type Riemannian metrics. 

For the first class we have "'2#0 and therefore all me
trics are Petrov type D. The Weyl and Ricci spinors are both 
invariant under the spatial rotation 

(
e

i8 0) o e-i8' (3.16) 

where {} is a real parameter. Thus 

dim(Ho) = 1. (3.17) 

Following the scheme outlined in Sec. II, we next calcu
late the algebraically independent parts of the first convar
iant derivative of the Riemann spinor. Now CLASSI gives 

D"'20 = - Dt/13i = (2i{i15).o(.o2 - !m2
) , 

XIO = X2i = i{i.o(.o2 
- !m2

) , 

Del> Ail = 0, for all A and iJ , 
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DA=O. (3.21) 

Since to = tl = 0 and the invariance group is yet the 
same, the process terminates. The group of motions is there
fore five dimensional with a one-dimensional isotropy 
group, as one may easily find by using Eq. (2.1). Thus the 
necessary conditions (3.10) and (3.11) are also sufficient 
for ST homogeneity for the present class. 

For the next class (m 2 = 402;m,0#0) theWeylspinor 
tPA vanishes identically, which means conformal flatness. 
We also have 

<1>06 = <l>2i = - 2<1>1i = m2/8, 

A= -m2/16. 

(3.22) 

(3.23) 

Here the group of invariance of <I> AB is the three-dimensional 
Lorentz group SO(2,1). Thus we so far have to = 0 and 
dim(Ho) = 3. Since all derivatives turn out to vanish identi
cally, the process terminates and we have a G7 of motions for 
this class of Godel-type Riemannian manifolds. 

As for the last class (0 = 0, m2 #0), using CLASSI, we 
similarly find that 

tP2=m2/6, <l>li = _m2/4, (3.24) 

A = - m 2/12, to = tl = 0, (3.25) 

and that all derivatives as well as XDEFW vanish identically. 
Moreover, from Eqs. (3.24) and (3.25), we learn that the 
Weyl and Ricci spinors are both invariant under spatial rota
tions and boosts, namely 

e; e~j8) and (~ r~I)' (3.26) 

where () and r are real parameters. Therefore from Eqs. (2.1) 
and (2.2) we readily find that there exists a G6 of motions 
acting on the manifold. The conditions (3.10) and (3.11) 
are once more sufficient for ST homogeneity. 

We collect the results so far obtained in the following 
theorems. 

Theorem 1: The necessary and sufficient conditions for a 
Riemannian Gooel-type manifold to be ST homogeneous are 
those given by Eqs. (3.10) and (3.11). 

Theorem 2: All ST-homogeneous Godel-type Rieman
nian manifolds are characterized by two parameters m and 
0: identical pairs (m2,0) specify equivalent manifolds. 

Theorem 3: Except for the m2 = 402 manifold, all Rie
mannian Godel-type manifolds are Petrov type D with ei
ther a Gs (when 0#0) or a G6 (when 0 = 0) of motions. 
The special m2 = 402 manifold is Petrov type 0 and admits a 
G7 of isometries. 

It is worth emphasizing that in Theorem 1 above we 
recover the Raychaudhuri-Thakurta-Rebou~as-Tiomno 
necessary and sufficient conditions for ST homogeneity of a 
Godel-type Riemannian manifold. However, contrary to 
their proof, we have made no hypothesis on the nature of the 
isometries. 

It should also be noticed that Theorem 2 is a generaliza
tion of a theorem given in Ref. 16, in that it is now proved in a 
much more general setting. 

Before proceeding to the discussion of the types of Ricci 
spinor, let us state the problem and fix our notation. The 
algebraic classification of the symmetric second-order Ricci 
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tensor R,M in general relativity, is a linear algebra problem 
with an underlying four-dimensional space-time having an 
indefinite norm, which can be given in terms of the Segre 
characteristics or Segre types. It turns out that only the types 
[ 1,111] and [2,11] and their specializations are consistent 
with both the local Lorentzian character of general relativity 
and the dominant energy conditions. In referring to the Se
gre types we use a notation where the individual digits inside 
square brackets are related to the multiplicity of the corre
sponding real eigenvalue, equal eigenvalues are enclosed in 
round brackets, the first digit corresponds with a timelike or 
null eigenvector and is separated from the spacelike ones by 
a comma. 

Now making use of a CLASSI program written in SHEEP 

by Joly and MacCallum13 one finds that the ST-homogen
eous Gooel-type manifolds have a Ricci spinor or Segre type 
[1,1 (11)] unless 

m 4 
- 602m2 + 804 = 0 . 

The roots of this equation correspond to the Godel manifold 
m2 = 202, which is Segre type [1,( 111)], and the Rebou
~as-Tiomno space-time m2 = 402, which is of type 
[ ( 1,11 ) 1] of the Segre classification. 23 

As for the possible sources for the [1,1 ( 11)] algebraic 
type one can show that 24 it may be generated by either a 
nonviscousfluid ('1/ = S = 0) with heat flow or combination 
of fields as, e.g., two radiation fields, two perfect fluids, or 
even a radiation field plus perfect fluid. 

It seems worth stressing that energy-momentum tensors 
of quite different matter distributions may, in fact, have pre
cisely the same Segre type. Tupper,2.5.26 for example, showed 
that the Godel model m2 = 202, originally found as a perfect 
fluid solution, may also be produced by a magnetohydrodyn
amic fluid. 

To conclude, we mention that although originally found 
as generated by a massless scalar field, the m2 = 402 Godel
type space-time is also a solution for a rotating matter with 
spin.27.28 The fact that it is of Segre type [( 1,11) 1] implies 
that the related energy momentum tensor may yet be under
stood as that of a tachyon fluid.29 
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The field equations for axially symmetric gravitational fields in 4 + K dimensions with K
dimensional toroidal compatification can be reduced to those of a generalized nonlinear sigma 
model. The dual symmetry of this model is considered first. Then the soliton transformations 
for these equations are derived using the method of Belinskii and Zakharov consequently 
generalizing their results to the higher-dimensional case. From the results of the one-soliton 
transformation, a series of discrete symmetries generalizing the Neugebauer-Kramer 
transformation in the four-dimensional case are obtained. The basic properties of these new 
transformations are studied. 

I. INTRODUCTION 

Recently, some progress has been made toward the solu
tions of vacuum Einstein equations in higher dimensions un
der the Kaluza-Klein ansatz. 1-7 First Sorkin I and Gross and 
Perry2 discovered a monopole solution in five dimensions. 
Then we found that the field equations for spherically sym
metric monopoles3 and dyons4 in this case can be completely 
integrated and explicit integrations were carried out. The 
complete integrability was generalized to 4 + K dimensions 
by discovering a Lax form for the field equations.s The ex
plicit integration in this case was accomplished later.6 The 
spherically symmetric case represents solutions of vacuum 
Einstein equations in 4 + K dimensions with 2 + K com
muting Killing vectors. It is natural to expect that the com
plete integrability might be extended to such general cases. 
In particular, we found7 that the field equations for axially 
symmetric Abelian Kaluza-Klein monopoles and dyons can 
be separated into two sets. The first set can be integrated by 
quadrature once the second set is solved while the second set 
reduces to a generalized nonlinear sigma model,8 which pos
sesses dual symmetry. When K equals zero, i.e., in four di
mensions, this dual symmetry is known9 and is related to a 
Lax pair proposed by Belinskii and Zakharov (BZ) 10 as was 
shown by Cosgrove. II A Lax pair of the form of BZ is also 
valid in the general case when K is nonzero. It is then possi
ble to work out soliton transformations following the 
method of BZ. IO,12 In the five-dimensional case, Belinsky 
and Ruffini 13 used the BZ two-soliton transformation to 
generate asymptotic flat solutions from the trivial back
ground. They found that the solutions represent electric 
monopoles with magnetic dipole moments. Burzlaff and 
Maisonl4 derived the linear eigenvalue problem by first con
structing infinitely many conservation laws. In the series of 
works, we shall consider the generalization to arbitrary K. 
This may not be of immediate interest as a theory of higher
dimensional gravity but it is quite interesting when consid
ered as a theory generalizing the nonlinear sigma models.8 In 
particular, one may ask, for example, if the rather successful 
formulation of Hauser and ErnstIs for the K = 0 case can be 
generalized to higher dimensions and used for sigma models. 
One key ingredient in the Hauser-Ernst formulation is the 
Neugebauer-Kramer (NK) mapping. 16 Our main result in 

the present work is to show that this mapping admits gener
alizations to higher dimensions. 17 The generalized NK 
transformations will play the central role in the theory of 
soliton transformations for axially symmetric higher dimen
sional gravity and for sigma models. In Sec. II we shall write 
down the field equations and establish their relations to the 
generalized nonlinear sigma model. The notations follow 
closely those of Ref. 7. The dual symmetry transformation is 
then treated in detail. In Sec. III, we derive the BZ one
soliton transformation for all the relevant quantities so that 
iterations can be carried out readily. These two sections rep
resent straightforward generalizations of known results. 10-14 
We include them for completeness and for setting up our 
notations for subsequent works. We then point out the fact 
that the BZ one-soliton transformation can be written as 
successive transformations of a dual transformation fol
lowed by a certain discrete transformation and then a dual 
transformation again. This generalizes the known result of 
Cosgrovell for the vacuum Einstein equations in four di
mensions. The discrete symmetries can then be identified as 
the generalized Neugebauer-Kramer (NK) 16 transforma
tions. Explicit formulas for them are given in Sec. IV. In Sec. 
V, we derive the basic properties of the generalized NK 
transformations. A brief discussion is given in Sec. VI. 

II. FIELD EQUATIONS AND DUAL SYMMETRY 

We shall consider the following metric in 4 + K dimen
sions: 

g = gJ-LV dxl' ® dxv + ¢Jab (X)() a ~!;(}b , 

where 

() a = dya + A aJ-L (x)dxl-' . 

(1) 

(2) 

The ya are coordinates of the internal space that is isomor
phic to an Abelian Lie group. For the four-dimensional part 
of the metric, we assume that 

gJ-LV dxl' dxv =/(dp2 + dr) + hilv dxil dxv , ji = t,<p, (3) 

where land hilv are functions ofp, z only. We shall represent 
p, zby xI". 

The curvature tensor of the metric can be found in Ref. 
18. The field equations are of the form of conserved currents. 
Explicitly, let us introduce the currene 
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(4) 

where 

XI"ft b = - (al',h h -I)ft VA bv + (aI" (1 (1-I)a bA aft + al',A bft - (1ach vXA aftA \ al',A Cx ' (5) 

Then the field equation Rap = 0 corresponds to the conser
vation of the lower left block of JI'" while the equations 
Rftv = 0 and Rab = 0 correspond to the conservation of the 
upper and lower diagonal blocks, respectively. The conser
vation of XI"ft b follows from these equations as an algebraic 
identity. The remaining field equations RI"'" = 0 can be 
written as 

a ~1" - as In( - g) 1/2 as 1" + 1"-1 Tr J~ = 0 , 

a 2 1"-a In( _g-) 1/2 a 1"+1"-1 TrJ2 =0 
'1 '1 '1 '1' 

as a'l In( - g) 1/2 = - 1"-2 Tr Js J'l . 

Here we have introduced the complex coordinates 

S=z-ip, 1]=z+ip 

and the notations 

(_g)1/2= (-detg)1/2, 1"= (-deth·det(1)1/2. 

The conservation of the trace of JI" implies 

(a; +a;)1"=o. 

We shall introduce the conjugate harmonic function 0' 

az 1" = apO' , ap 1" = - azO' , 

and w, W such that 

W = 1" + iO' , W = 1" - iO' . 

(6) 

(7) 

(8) 

(9) 

( to) 

(11 ) 

Note that w is an analytic function of 1] while W is an analytic 
function of S. 

Once JI" is known, Eq. (6) can be used to get (_g)1/2 
and hence Iby quadrature. Equation (7) follows from (6) 
and the conservation of JI'" Indeed, it is the consistency 
condition ofEq. (6). 

To see the relation with sigma models, let us introduce 
the vielbein 

(12) 

(13) 

Let 0' denote the involutive automorphism on invertible ma
trices 

O'(M) = (MT)-I, q2 = 1, 

then 

Q = 0'( G) G -I = (GG T) - I 

depends only on the metric, indeed, 

The current JI" can be written as 
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(14) 

(15) 

(16) 

JI" = (1"/2)Q -lal',Q. 

It follows that JI" satisfies the constraint 

as J'l - a'l Js + 21"-1 [Js' J'l J 

and the conservation equation 

as J'l + a'l Js = 0 . 

(17) 

(18) 

(19) 

Equations ( 18) and ( 19) can be linearized, Following BZ,IO 
we introduce the vector fields L s' L'l: 

Ls =as +U(1"+,O-las1"a" , 

L'l =a'l +U(1"-,O- la'l1"a". (20) 

It is easy to see that 

[Ls,L'lJ =0. (21) 

The Lax pair is 

Ls,p( ';A.) = 2 (1" + A.) -I,p( ';A.) Js ' (22) 
L'l,p(·;A.) =2(1"-A.)-I,p(.;A.) J'l' 

From Eq. (17), it follows that we can choose the normaliza
tion 

,p(';0) =Q. (23) 

We now change variables from A. to s such that s ( ';A. ) 
satisfies 

ds(Ls ) = 0, ds(L'l) = 0 . 

These equations can be integrated to give 

s=/(A.+ (w-w) +~/A.), 

(24) 

(25) 

where I(x) is an arbitrary smooth function. We choose 
I(x) = X-I so that 

S=A.I{A.2+(W_W)A.+~}. (26) 

The Lax pair, Eq. (20), becomes in terms of S, 1], s: 

asU(';S) =1"-1(1 + r-I)U(';S) J s ' 

a'lU(';S) =1"-1(1 + r)U(';s) J'l' 

where 

,p(';A.) = U(';s)ls as in (26), 

r- I = (1- 2sW)1/2(1 + 2sW)-1/2. 

(27) 

(28) 

(29) 

Note that A. and r are double-valued functions of s so that 
A.,~/A. correspond to the sames and so do r, - r. The value 
of,p( ';A.), U( ';s) on the second sheet of the s surface will be 
denoted by fP( ';A.), fI( ';S) and they satisfy, respectively, 
Eqs. (22) and (27) withA.-~/A., r- - r. 

Equation (27) is the linearized equation expressing dual 
symmetry for the generalized nonlinear sigma models on 
symmetric spaces.8,19 Indeed, once Eq. (27) is solved, a new 
solution is given by 
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and 

G (S) = U( ';s)G, r(S) = r1S2, 

S2 = (1- 2sw)(1 + 2s'W) 

J/S) = - r-1r(S)r-1U(';s) JsU(';S)-1 

= !as(asU U- 1), 

J., (s) = - r-1r(S)rU( ';S) J., U( ';S)-I 

= -~a.,(asUU-I), 
with 

w(S) = wl( 1 - 2sw), 'W(S) = 'WI ( 1 + 2s'W) . 

The transformed U is given by 

U(S)(·;S')=U(·;S' +s)U(';S)-I, 

(30) 

(31) 

(32) 

(33) 

where a dot means equal up to mUltiplication on the left by a 
constant matrix. The new Q follows from Eqs. (15) and 
(30) and also from Eqs. (23) and (33): 

Q(S) = oiU( ';s»)QU( ';S)-I=U( ';s)U( ';S)-I, (34) 

which is manifestly symmetric. 
In going from Eq. (30) to (32), we have fixed an arbi

trary additive constant. By fixing this constant, we have 
made the Abelian character of the dual symmetry transfor
mation manifest as is clear from Eq. (33), which can be used 
to generate successive dual transformations. In the four-di
mensional case (Le., K = 0), this dual symmetry transfor
mation corresponds to Neugebauer's 12 transformation, or, 
more precisely, Cosgrove's Q4s transformation. 11

•
2o Let us 

also note that for successive dual transformations, we can 
choose either sheet of the s surface at each stage so that there 
are two variants ofEq. (34) and four variants ofEq. (33). 
We shall consistently use a tilde to denote quantities on the 
second sheet. 

Note that the last equality in Eq. (31) gives the potential 
for the conserved currents Jp.' (s). If we expand Jp.' (s) around 
s = 0, we get infinitely many nonlocal conserved currents 
with the corresponding potentials given by 

(35) 

(36) 

The R;'s will be called the "higher potentials." They are 
introduced mainly for later use. 

From Eqs. (8), (13), and (15), we find that 

det Q = - lIr. (37) 

However, det Q (s) does not satisfy the corresponding con
straint. Indeed, it follows from the trace ofEq. (27) that 

det U(,;S) =sl A 

so that 

det Q (s) = _ A 2/s2r . 

(38) 

(39) 

A solution that satisfies the proper constraint can be ob
tained by renormalization: 

'" Q(S)=(sS2/A)2InQ(s), n=K+2, (40) 

with the corresponding change 
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js (S) = Js (s) - (lin )r(S)r-1rs- 1 (1 + rs- I) , 

j., (s) = J., (.) - (lin )r(S)r-1rs (1 + rs) , (41) 

where the sUbscript s for r means evaluating at s. Denoting 
the transformed r by r(S), we find from Eqs. (29) and (32) 

r~S) = rs-1rs+s' . (42) 

Similarly, we find the transformation law for S to be 

The renormalization necessary for U (s) is found to be 

ir(s) (';s) = {2sS(rs + rs+ s' )/(1 - rs) 

x (1 - rs+s' )}2Inu(s)( .;S') . 

Substituting Eq. (41) into Eq. (6), we find that 

(_g(S»1/2=( _g)I/2(A2/~S)2InS-4. 

(43) 

(44) 

(45) 

This completes our derivation of the dual symmetry trans
formation. The formulas are clearly ready for iteration. 
Apart from the renormalization factor, the symmetry is es
sentially Abelian. As we shall see in the following section, 
dual symmetry is closely related to the BZ soliton transfor
mation. 

III. SOLITON TRANSFORMATIONS 

Given Q, Jp." and tP( ';A) satisfying Eq. (22), we seek a 
new solution tP' ( ';A) by dressing tP10

,12: 

tP'(';A)=tP(';A)X(';A), Q'=tP'(·;O). (46) 

It is clear that Q ' in general need not be symmetric. How can 
we get a symmetric Q '? Note that the symmetry requirement 
of Q can be expressed as 

u(Q)Q = 1. (47) 

If we normalize tP as in Eq. (23) and normalize 'fi( ';A) by 

'fi( ';0) = 1 , (48) 

then it is clear that to ensure condition (45), we have only to 
require 

(49) 

That this is possible can be seen from the second equality of 
Eq. (34). Requiring tP', 'fi' to satisfy Eqs. (48) and (49) is 
equivalent to requiring 

X(';O) = 1 (50) 

and 

u(x( ';A»)Q' = QX( ';A) . (51) 

The dressing matrix X ( . ;A) in general can be represent
ed as a sum over discrete poles on theA plane together with a 
line integral over a closed curve. 12 When only the pole terms 
exist, the transformation is called pure solitonic. For pure 
soliton transformations, we write 

N Q.(.) 
X( ';A) = 1 + L I , 

i= 1 (A -Ai) 

M R (.) 
X( ';A)-I = 1 + L i • 

i=1 (A -I"i) 
(52) 

In general, N need not equal M, but the constraint (51) 
requires that they be equal and form pairs: 
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Pi = r/Ai , i = 1, ... ,N. (53) 

Substituting Eqs. (46) and (52) into Eq. (22), and requiring 
the residues of the double poles atA = Ai' A = Pi to vanish, 
we find that Ai' Pi have to satisfy the partial differential 
equation 

as y=2Y(T+y)-lasT, a7J y=2Y(T-y)-la7J T, (54) 

which can be integrated so that 

Ai + (w - w) + rlAi = l/Si (55) 

and Pi satisfies the same equation with the same constant Si' 
following from Eq. (53). It is now clear why we made the 
particular choice when going from Eq. (25) to Eq. (26). 

In the following, we shall consider the case N = 1. The 
general N-soliton transformations can be obtained by iter
ation. Their explicit formulas will be presented in a subse
quent work. The one-soliton transformation that we shall 
consider preserves the symmetric tensor character of Q but 
need not preserve reality. The reality condition is easy to 
satisfy and we shall comment on this later. 

PuttingN = M = 1 inEq. (52) and multiplying the two 
expressions, we find the algebraic constraints 

RI = - QI' QI = QU(A I -PI)' 

RI =Ri/(PI-AI)' 

which imply 

PI = QI/(A I -PI) =RI/(PI-AI ) , pi =PI , 

is a projection operator. Using PI' we can write 

X(·;).) = I-PI + (A -PI)(A -AI)-IPI · 

Let the rank of PI be ql' then we have 

(56) 

(57) 

(58) 

TrPI=ql' detX(·;).)=(A-PI)q'(A-AI)-q,. (59) 

The matrix PI can be written as 

(60) 
XI.FI = complex nXql matrices. 

From the partial differential equations satisfied by X( .;).), 

we find that PI satisfies 

and 

(1- PI)(as + 2(T +AI)-IJslPI = 0, 

(1 - PI )(a7J + 2(T - AI) -lJ7J)PI = 0, 
(61) 

Substituting Eq. (72) into Eq. (6) and using the relations 

Tr(X[QXI)-1 as (X [QXI ) = -~ T-A I TrJsPI ' 
T T +A I (73) 

Tr(X[QXI )-la7J (X[QXI ) = _~ T+A I TrJ7JP I , 
T T - Al 

which follow from Eq. (63), we obtain 
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PI(as -2(T+PI)-IJs)(1-PI ) =0, 

PI(a7J - 2(T - PI)-IJ
7J

)(1 - PI) = O. 

It follows that we may require 

(as + 2( T + AI) -IJslXI = 0, 

(a7J +2(T-A I)-IJ
7J
)XI=0, 

so that 

XI = tI- l
( ·;).I)XI (0) 

for some constant matrix XI (0). 

(62) 

(63) 

(64) 

To find the remaining part of PI' we use Eq. (51). Re
quiring Q I to have no poles on the A plane, we find 

P[Q(1-PI )=O, p[Q=QPI , (65) 

which can be solved for (FI + XI) -IFI + to give 

PI =XI(XITQXl)-IXITQ. (66) 

Using Eqs. (34) and (64), we find 

PI = tI- l ( ·;).I)P\S')tI( ';).1) , (67) 

where 

PIS,) =X\O)(X\O)TQ(S')X\O»-IXIO)TQ(S,). (68) 

Note that from Eqs. (67) and (34) one can see that Eq. (62) 
is satisfied. 

It follows from Eqs. (46) and (58) that 

ti' ( .;).) = tI( ·;)')tI( ';).1)-1 

X (1 - PIs,) + ~ = ~: P IS'»)tI( ';).1) (69) 

and 

Q '= G:t1n 

QtI( ';).1)-1 

X(l-PIS,) +~: PIS'»)tI(·;).I) ' (70) 

where proper renormalization has been imposed on Q I. The 
renormalized ti' is then 

¢' (.;).) = (A - Al )/(A - PI) )q,lntl' (.;).) . (71) 

The transformation law for the current Jp.' follows from the 
differential equations for X ( ';)'). By examining the behavior 
of these equations near A = ± T, we find 

(72) 

X (TISi )q,(n- q, +2)/n, (74) 

where 

Si = (1- Zslw)(l + Zslw). (75) 

Equations (70), (71), and (74) represent the full results for 
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one-soliton transformation that can be iterated any number 
of times. 

Now we shall say a few words about the condition for 
the metric to be real. From Eqs. (22) and (27), one can see 
that to ensure reality, we can require 

"p*( ';A.) ="p('; - A), U*( ';s) = U('; - s). (76) 

It follows that for Q (s) in Eq. (34) to be real, we have to 
choose S to be pure imaginary. For soliton transformations, 
insisting condition (76) for "p' ( ';A.) and hence X( ';A.), we 
see from Eq. (52) that if Aj is a pole, - A r must also be a 
pole. This also implies, from Eq. (55), that the constants Sj 

chosen must form (sj> - sr> pairs unless Sj is pure imagi
nary. Moreover, for (Sj, - sr) pairs, the corresponding Qj> 
R j have to form (Qj' - Q r) and (Rj> - R r) pairs. For 
one-soliton transformation, the only choice is to have SI' AI' 
QI pure imaginary so that P is real. This can be achieved by 
requiring 

(77) 

where c is an arbitrary constant. 
Finally, let us make the following observation. In Eq. 

(69) for BZ one-soliton transformation, we replace A by 
# = r / A and notice that 

#-#1= _(y +1)(y _1)-1 
1 S. SI 

# -/I,I 

X(y~~s, -1)(y~~)s, + 1)-1. (78) 

Equation (69) can then be written as 

~/( ';A.) = 4>( ';s - SI)4>('; - SI)-I , (79) 

where 

4>(';S-SI) = U(';s)U(';SI)-1 

(80) 

and we have used the relation 

ys-I =y~s' (81) 

which follows from Eq. (42). 
Recalling the definition of PI (s,) in Eq. (68) and com

paring Eqs. (79) and (80) with the dual symmetry transfor
mation Eq. (33) and its variants, we see that the BZ 
one-soliton transformation consists of successive transfor
mations of the form 121 (q,) 12, where 12 is a dual symmetry 
transformation and I (q,) is a certain discrete transformation 
that can be read off from Eq. (80). Let us recall that for the 
four-dimensional (K = 0) case, Cosgrove I I showed that the 
BZ one-soliton transformation can be written as 12II2, where 
I is the Neugebauer-Kramer l6 transformation. Hence we 
see that the Neugebauer-Kramer symmetry generalizes to a 
series of discrete symmetries. 17 In the following section, we 
derive the formulas for these symmetry transformations. 

IV. GENERALIZED NEUGEBAUER-KRAMER MAPPING 

The discussions at the end of the previous section sug
gest that we seek a new solution by writing the new generat
ing function UI (';s) in the form 
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U/(';S) =A(s)U(';S)[I-P 

+ (y+ 1)(y-1)- lp]y- I(.), (82) 

where y(.) is a matrix function of S, 1/, undetermined from 
the soliton transformation. Here A (s) is an invertible matrix 
function of S only and P is a projection operator defined by 

P=Xo(X6"QXO)-IX6"Q, (83) 

where Xo is a constant complex n Xq matrix of rank q with 
l.;;;;q<n. 

As before, Q/ will be given by U/ ( . ,0). From Eq. (82), 
we find that in order for Q/ to exist, we must require 

A(O)P= O. 

This is achieved by the minimum choice 

A (s) = 1 - Po + 2sPo , 

where 

Po = Xo(X 6"koXo) -IX 6"ko 

(84) 

(85) 

(86) 

with ko an arbitrary invertible matrix. This choice is mini
mum in the sense that any other choice can be obtained by 
multiplying A (s) on the left by another matrix B(s) which is 
analytic and invertible at S = O. Such modifications, as we 
shall see, affect the formulas for Q/ only trivially. 

As in the case of soliton transformation, to ensure that 
Q/ be symmetric, we shall require the validity of Eqs. (48) 
and ( 49) for U/, U/. This together with the fact that U/ is the 
analytic continuation of U/ onto the second sheet so that it is 
essentially determined by U/ with the change y ..... - y, 
U ..... U, we obtain 

U/(';s) =u(A(S»)U(';S)(I-P+ y-l p) y- I
(.) 

y+l 

and 

Q/ =U(Y)Qy-1 

with Y( .) given by 

y(.) = lim {u(A(S»)U( ';S)(1 _ P + Y - 1 p)} 
s-o Y + 1 

(87) 

(88) 

= [1 - P T + ! 1"P 6" + P 6" Ro(1 - P T)] Q , (89) 

where Ro is the first potential defined in Eq. (35). The in
verse of Y( .) is easily found to be 

y- I
(.) =Q- I [1-P6" + 21"- lp T 

- 21"- lp TRo(1 - P 6")] . 
One can check by straightforward computation that 

as U/( .;S) = 1"-1(1 + y-I) U/( ';s) J/s ' 

aT/ U/( .;S) = 1"-1(1 + y) U/( .;S) J/T/ ' 

with 

J/s = - Y [(1 - P) Js (1- P) + PJsP 

(90) 

(91) 

- PJs(1-P) - (1-P) Jsp+as1"P]y- l
, 

J/T/ = - Y( JT/ + aT/1" P)y- I . (92) 

From Eq. (6), we find the transformation formula for g: 
(_g/)1/2= (-g)I/2~det(X6"QXo). (93) 
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The lack of symmetry between 5 and 1] in Eq. (92) 
shows the complex character of generalized NK transforma
tions. Indeed, if we call the above transformation / (q), then 
there exists the conjugate transformation / ~q) given by 

U (,;S) =A (s)U(';S) 
I. • 

X[l-P- (y+ l)(y_l)-IP]y;I(.) 

(94) 

choosing 

A. (s) = 1 - Po - 2<;Po , 

we have 

(95) 

y.(.) =lima{A.(S»)U(';S)(l-P- y-1 p) 
~o y+1 

= (1 - P T + ! 'TP 6 - P 6 Ro(1 _ P T) ] Q . 
(96) 

The currents now transform as 

JI•s = - y. ( Js + as'T P) Y; I , 

JI • ." = - y. [ (1 - P) J." (1 - P) + PJ." P (97) 

-PJ.,,(1-P) - (1-P) J."p+a.,,'TP]y;l. 

Ifwe change A (s) by multiplying the minimum form on 
the left by B(s), y(.) will be modified to B(O) Y(·). This 
amounts to applying an additional symmetry transforma
tion, namely, the global rotation of the K + 2 commuting 
Killing vectors by B(O). 

Notice that the potential Ro appears in the generalized 
NK transformations. For completeness and for later use, we 
give the transformation law for Ro, which follows from Eq. 
(82) and the definition of the potential, 

RIO = Po (PRo - iu)Po + (1 - Po)Ro( 1 - P) (1 - Po) 

- (1- Po) [iuRo + !(R ~ - R I ) - RoPRo] 

XPo-PoP(l-Po) , (98) 

where u is defined in Eq. (10) and Ro, R I are potentials on 
the second sheet. In fact, due to Eq. (47), we have the rela
tions 

- T' Ri = - R i V I. (99) 

The generalized NK transformations /(q)(ko,xo) de-
pends on the matrix parameters ko and Xo. One can show 
that the inverse transformation is 

( 100) 

so that / (q) is involutive when ko = 1. Although we have 
"derived" the NK transformations from the BZ one-soliton 
transformations, the exact relation between them requires 
more careful treatment and will be given in the next section. 

V. BASIC PROPERTIES OF NK TRANSFORMATIONS 

Let us begin by introducing some obvious symmetry 
transformations. Let Q be a solution and U( ';s) the corre
sponding generating function. Then 

Q-+u(Q)=Q-I, U-+u(U) , U-+u(U) (101) 
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is also a solution. We shall also use u to denote this symmetry 
transformation despite possible confusions. From Eqs. (33) 
and (34), we can see that 

/2(0) = u. (102) 

It is convenient to define 12 (s) by 

[- (s) _ CT./ (s) 
2 - 2 • (103) 

Similarly, we shall define 

I(q) (ko,xo) = u/(q) (ko,xo) . (104) 

Let CESL(n,R), n = K + 2. Then we have the symme
try transformation R ( C) : 

R(C)Q=u(C)QC- I , R(C)U=u(C)UC- I , 

R(C)U= CUC-I. (105) 

Finally, let G(s)EGL(n,C) be a function of s only and 
G(O) = 1. Then we have the trivial gauge transformation 
L(G), 

L(G)U=G(s)U(';S) , L(G)U=u(G)U, (106) 

which leaves Q unchanged. There is another symmetry 
transformation which arises from projective transforma
tions of p, z coordinates treating Q and U as scalar functions 
of p, z. This symmetry transformation is important for some 
purposes but will not be considered here. 

The following commutation relations among these sym
metry transformations can be easily derived: 

u1
2 

(s) = 12 (s)u , (107) 

R(C)1/S) = 12 (S)R(C) , (108) 

R(C) 'U= u'R (u(C») , (109) 

R(C)I(q)(ko,xo) =I(q)(u(C)koC-I,CXo»)R(C) , (110) 

ul (q) (ko,xo) = I (q)(k 0- \u(ko) -IXO) -IU , (111 ) 

1/sl)L (G(s») = L (G(s + sl)G(sl)-I)R(a{G(sl»)12 (SI) , 
(112) 

L (G(s»1
2

(SI) =12(SI)L (G(s -SI)G( -Sl)-I) 

XR(a{G( -Sl») , (112') 

R(C)L (G(s») = L (u(C)GU(C)-I)R(C) , (113) 

uL (G(s») = L (u(G(s»)u, (114) 

I (q)L (G(s») = L(a{A (s) )G(s)a{A (S»)-IU( C) -I) 

XR(C)I(q) , (115) 

u(C) = lima{A(s»)G(s)a{A(s»)-I. 
S_O 

Now we may give the exact relations between the BZ one
soliton transformation / ~st> (Xo) and the NK transforma
tions I (q) (ko,xo): 

u/~~?(Xo)u= R(a{A( - Sl)-I)L (A( -sl)A(s - Sl)-I) 

X1
2

( -SI)I(q)(ko,xo)1iSI ). (116) 

Note that the BZ one-soliton transformation is singular 
ats l = Oands = Sl' TheSL(n,R) factor and ~hegau~et~ans
formation removes the singularities so that /2 ( - SI) / (q) /2 (SI) 
is regular at these points. Aside from these factors, we may 
think of I (q) as the basic one-soliton transformation while 
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i2 (s,) merely translates the position of the pole in the s plane. 
Because ofEq. (110), we have only to consider the case 

ko = 1. We shall therefore set ko = 1 and omit ko from the 
arguments of I (q). As we have noted in the previous section, 
I (q) (Xo) is involutive 

l(q)(Xo)2=1. (116') 

On the other hand, 1(q)(Xo) can be raised to any power. We 
shall first show that it is enough to consider the rank one 
case, i.e., q = 1. We shall omit the superscript q from 1 (q) 

when the rank of Xo is clear or is irrelevant. 
Let us consider two successive rank one 1 transforma

tions. Recall that Q=O'(G)G- I from Eq. (15). We shall 
choose a gauge so that G satisfies 

(117) 

which implies 

(1- Po)G -IPO = 0, PG = GPo, G -IP=POG- I . 

(118) 

In proving these, we used the identity 

(X~XO)-I(X~GXO)(X~XO)-I = (X~G-IXO)-I, (119) 

which is valid in this gauge. 
Equation (88) implies that we may choose 

G] = YG = (1 - Po)O'( G)( 1 - Po) + (r/2)PoO'( G)Po 

+ PoRo(1 - Po) 0'( G)( 1 - Po) , (120) 

which again is in the gauge of Eq. (117). The NK transfor
mation given by Eq. (82) can now be expressed as 

( r- 1 ) UiGi =q(A(s»)(UG) I-Po+--Po . 
r+l 

(121) 

Now consider two I transformations denoted as II' 12 with 
the corresponding projection operators POI' P02 satisfying 

POlP02 = P02POI = 0 (122) 

so that POI + P02 is a rank-2 projection operator. 
From Eq. (120), we find that 

Gi, = (1-POI )G(1-POl ) + (2/r)(1-POl )RoGPol 

+ (2Ir)PoIGPol ' (123) 

In order to apply Eq. (121), Gi, has to be chosen in the gauge 

(1 - Po2 )Gi, P02 = (1 - POI - P02 ) GP02 = O. (124) 

This can always be done and we find 

I(Po2 )1(PoI ) = 1(Pol + P02 ) . (125) 

The iterations can be continued. We have to choose G to 
satisfy 

(1 - ;~I Po;) GPOm = 0 Vm = 1, ... ,n - 1. (126) 

Let ej be an orthonormal basis for R nand POj = ejej. In this 
basis, G satisfies Eq. (126) if and only if it is upper triangu
lar. Carrying out n - 1 iterations we find 

1(en )"'1(el )(UG) = (A/1$r)UG, 

1(en )"'1(el )(UG) = (1$T/A)UG. 
(127) 

The factor (A /1$r) can be renormalized away. It appears 
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because we have not carried out the proper renormalization 
in the formulas (82) and (87), but this can always be done in 
the last step of successive transformations. With this in 
mind, we can write Eqs. (125) and (127) as 

I(e j )I(ej ) = I(ej )I(e;) = I(e;ej ) , i=l=j, (128) 

1(en )" 'I(el ) = 1 . (129) 

Note that we have used e; to represent POj and e;ej to repre
sentPo; + POj ' In general we shall usee;" 'ej to represent the 
projection operator on to the subspace spanned by ejJ ... ,e;. 
CombiningEqs. (111), (128), and (129) we find 

1\ 1 A A 

l(e;) - = O'1(e;)O' = 1(*e;) , 

where 

It is clear that the transformations 

(l(e;»)m, mEZ, 

(130) 

(131) 

are the basic ingredients of soliton transformations. Defin
ing 

1m (e;) = q(/(e;»)m, mEZ, 

we find easily that 

(132) 

1m(ej )2=1, mEZ. (133) 

The explicit formulas for 1(e;)m and 1m (e;) are quite com
plicated. They are still under investigation. On the other 
hand, although the BZ soliton transformations have singu
larities on the s plane, their iterations for any number of 
times are relatively easy to write down. These formulas are 
derived in a subsequent work.21 

VI. DISCUSSION 

In this work, we first established that finding the metric 
tensor satisfying vacuum Einstein equations in 4 + K di
mensions and admitting 2 + K commuting Killing vectors is 
equivalent to solving a generalized nonlinear sigma model. 
We then derived the formulas for BZ one-soliton transfor
mations with proper normalization and with a formula for 
the conformal factor f appearing in Eq. (3). These formulas 
can be iterated an arbitrary number of times. The result is 
given in a subsequent work. From BZ one-soliton transfor
mations, we derived a series of involutive transformations 
I (q) (Xo) generalizing the NK transformation in the four
dimensional case. The accompanying transformations I(e;) 
are shown to form the basic ingredients of BZ soliton trans
formations. The spectral dependence of the BZ soliton trans
formations is generated by conjugating I(e;) with the dual 
symmetry transformation i2 (s). 

As we mentioned in Sec. III, given a solution of the 
sigma model, new solutions can be generated by the method 
of dressing proposed by Zakharov and Shabat. 12 Finding the 
dressing matrix is equivalent to solving the matrix Rie
mann-Hilbert problem. The general solution of the dressing 
matrix can be written in two parts. The first part arises from 
solving the regular Riemann-Hilbert problem, which 
amounts to solving a singular integral equation. The second 
part is the pure solitonic part, which arises from solving the 
singular Riemann-Hilbert problem and can be obtained by a 
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purely algebraic method. It is known that in the four-dimen
sional case, all solutions can be generated from the trivial 
solution in this way. IS It is believed that this continues to be 
true in the higher-dimensional case. One interesting ques
tion is whether one can solve the singular integral equation 
and obtain the "continuum" part of the solution also by a 
purely algebraic method. The answer is believed to be yes but 
the actual construction of finite transformations is usually 
difficult. 

The solution space decomposes into sectors labeled by 
soliton numbers. It is believed that an infinite dimensional 
Lie group acts on the vacuum sector and the corresponding 
Lie algebra is a Kac-Moody algebra.22 Except in the four
dimensional case, the derivation is based on infinitesimal 
Riemann-Hilbert transformations, which is not practically 
useful since we do not know how to solve matrix singular 
integral equations in close form except in special cases. On 
the other hand, elements of the group are easily written 
down in terms of soliton transformations. For example, 
1m (e i )j/sl1m (ei ) gives infinitely many (labeled by m) one 
parameter (s) families of group elements. Investigation of 
the group structure along this direction is in progress. 
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Soliton transformations for axially symmetric higher-dimensional gravity. II. 
Belinskii-Zakharov N-soliton transformations 
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The solutions of vacuum Einstein equations in 4 + K dimensions with 2 + K commuting 
Killing vectors under the Abelian Kaluza-Klein ansatz are considered. This system admits 
Belinskii-Zakharov-type soliton transformations. The explicit formulas for general N-soliton 
transformations are obtained by iterating the formulas for the one-soliton transformation. 

I. INTRODUCTION 

In a previous work, I which we shall refer to as paper I in 
the following, we showed that the vacuum Einstein equa
tions in 4 + K dimensions under the Abelian Kaluza-Klein 
ansatz and the assumption of axial symmetry separate into 
two sets. The main set is equivalent to a generalized nonlin
ear sigma model2 so that the well-known method of Belins
kii-Zakharov (BZ) 3,4 can be applied to obtain the soliton 
transformations. The one-soliton transformation is worked 
out in detail in I and the results lead us to a series of new 
discrete symmetries5 generalizing the Neugebauer-Kramer 
mapping.6 In principle, the N-soliton transformations can be 
obtained by iterating the one-soliton transformation. It is 
sometimes desirable, however, to have explicit expressions 
for the general N-soliton transformations. In the four-di
mensional case (K = 0), this had been worked out by Belin
skii-Zakharov4 for N rank-I soliton transformations. Here, 
we generalize their results to 4 + K dimensions and for gen
eral N-soliton transformations of arbitrary ranks. These for
mulas can then be applied to flat background, to Weyl solu
tions 7 generalized to higher dimensions, or to other known 
solutions. This will be discussed in a subsequent work. 

Our notations follow those of paper I. In Sec. II, we shall 
first recall the formulas for a one-soliton transformation and 
then derive the formulas for a two-soliton transformation. 
This is because two-soliton transformations can preserve 
both reality and asymptotic flatness8 and hence are particu
larly useful. The derivation also shows that two successive 
one-soliton transformations commute (permutation 
theorem). Moreover, it prepares us for the derivation of gen
eral N-soliton transformations in Sec. III where we give the 
results and prove them by induction. 

II. TWO-SOLITON TRANSFORMATIONS 

The metric in 4 + K dimensions under the Abelian Ka
luza-Klein ansatz and the assumption ofaxial symmetry can 
be written as 

d $2 = /(dp2 + dz'l) + Q iii, I dxa dxb, a = ji,a, (1) 

where Qab is a symmetric n X n matrix (n = K + 2) given in 
(1.16). Here/and Q depends onp and z only. Moreover, 

detQ-l = -r, (2) 

where 07" = O. Instead off, we shall often use the determi
nant g of the total metric tensor gAB' which is related to/by 

(3) 

Given a solution Q,g, we can generate new solutions by 
solving the linearized equations 

asU( .;S) = 7"-1(1 + r-I)U( ';S)Js' 

aTJU(';S) =7"-1(1 +r)U(';s)JTJ , 
(4) 

where S,'T] are z - ip, z + ip, respectively, and r is a given 
function of S,'T],s defined in (1.29). The new solution ob
tained by a one-soliton transformation is given by 
QI,gI,UI (';S), 

X (r - A i )q,(2q, - n)/n 

xdet( I X [QXI) . (7) r -Ai 
In these formulas, PI is a projection operator 

PI =XI(X[QXI)-IX[Q, (8) 

with 

(9) 

Here XI (0. is an arbitrary constant n X q I matrix of rank ql; 
and S I is a complex parameter and is related to Al in the same 
way s is related tOA as given in Eq. (1.26). Finally,,ul = r/ 
Al is the value of Al on the second sheet of s. 

Note that PI can also be written as 

PI = U(';SI)-IXI(O)(X/m TQ(S')X/O)-I 

XXI(O) TQ (S')U( ';Sl), (10) 

where 

(11 ) 

with u being the involutive automorphism defined in (1.14). 
Now we can iterate Eqs. (5)-(7) one more time to ob

tain a new solution Q2,g2' and U2 ( ';S) depending on the pa
rameters X/o·,x2(0·,s1,s2' where X 2(O· is an arbitrary nXq2 
constant matrix of rank q2' 

The first step is to construct QI (s,) and P2 following Eqs. 
(10) and (11). We find 
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where 

QI = Q- (r -..t DQ (r _1..t1..t2 XI) 

x(r~..ti XiQXI)-I(xi r_l..tI..tJQ 

and 

( P ..t2 -..tl P ) X X TQ- X -I P2 = 1 - I + I 2( 2 I 2) 
..t2 - ILl 

with 

XXTQ- (I-P +..t2 -ILl p) 
2 I 1 1 1 I /1,2-/1,1 

where 
- -I 
S22 = S22 - S21 (Sl1) S12' 

Moreover, 

(13) 

(14) 

(15) 
I 

(19) 

det S = det Sl1'det 822, (20) 

The proof of the first part of the lemma is by straightforward 
computation. For the second part, we observe that S21 can be 
made to vanish by multiplying on the left with the matrix 

which does not change its determinant. 
Applying this lemma to l:2 and recall the definition of 

QI inEq. (13), we easily see that the determinant inEq. (16) 
is just det l:2' Putting everything together, we get 

( _ g2) 1/2 ~ ( _ g) 1/2?,(n - N, + 2)/n ( r - ..t1..t2 )2q
,q,ln 

..t1-..t2 

2 
X II [..t ;q,(n - q,- 1)ln( r -..t f)q,(2q,- n)/n] 

;=1 

'det l:2' (21) 

where N2 = ql + q2' 
Now we are ready to compute U2 ( ';S). For this, we have 

to compute 

( I-PI +..t -ILl PI) (I-P2 +..t -IL2 P2). (22) 
..t-..tl A-A2 

Since the form of P2 suggests that l:;- I may playa role, it is 
easy to guess at the answer. We shall first introduce some 
notations. Let H 2(..t), D2(..t) be the diagonal matrices 
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Next we can constructg2 from Eqs. (7) and (12). This 
will involve the determinant 

det( 1 XiQXI) det( 1 XfQX2) • (16) 
r-..ti r-..t~ 

The crucial point lies in observing that X fQIX2 arises natu
rally in the inverse of the matrix l:2' 

_ [r~..ti XiQXI, r_l..tI..t2 XiQ
X2] 

~- . 
1 XTQ!X 1 XTQ!X 

r-..tzAl 2 l' r-..t~ 2 2 

(17) 

This can be seen from the following lemma. 
Lemma: Let S be an invertible matrix and write 

where Sl1 is a submatrix of dimension n l Xn l and S22 is of 
dimension n I X n2• Assume S II is invertible. Then 

(18) 

(..t - ..t2)1q,XqJ ' 

(r - ..t..t2) lq,xq,] . 
(23) 

A 

We shall use H 2(..t) to denote the matrix obtained from 
H 2(..t) by the replacement ..tl--+ILI' ..t2--+IL2' This notation 
will be consistently used for other matrices that depend on i. 
Similarly, we shall use H 2(..t) to denote the matrix obtained 
from H 2(..t) by the replacement ..t-+IL = rl..t. This will be 
consistently used for other matrices that depend on..t and is 
consistent with our notation that "tilde" denotes quantities 
on the second sheet of s. Now we define 

r 2(..t) = - H 2(0)l:2H2(..t), 

i\(..t) = -H2(0)l:2H2(..t) 

and note that 
A. A AA. 

r 2(..t) = - H2(0)l:2H2(..t) = l::zD2(..t)· 

Also define the n X (ql + q2) matrix as 

(24) 

(25) 

(26) 

With these preparations, we can state the following theorem. 
Theorem: The expression in Eq. (22) is equal to 

1- Y2r2(..t)-IYfQ (27) 

so that 
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(29) 

Note that Q2 is manifestly symmetric. 
The proof of the theorem is by straightforward compu

tation using Eq. (18). 
Summarizing, Eqs. (28), (29), and (21) give the for

mulas for two-soliton transformation. It is clear that the fi
nal result is invariant under simultaneous interchange of 
SI,s2 and X/O),x2(0}' This is the permutation theorem for the 
BZ two-soliton transformation. 

Let us also remark that if we chooses2 = SI while letting 
X I (0),x2(0) independent so that the matrix [XI (0),x2(01] is of 
rankN2 = ql + q2' then the two-soliton transformation with 
ranks ql and q2 reduces to a one-soliton transformation of 
rankN2. This is quite obvious for Eqs. (28) and (29), while 
for Eq. (21), a simple computation using the relation 

Al -A2 =A: (.,-2 -A: )-I(SI - S2) + O(SI -S2)2) 
(30) 

proves the assertion. This shows that for multisoliton trans
formations, it is enough to consider only the rank -1 case. The 
general situation is obtained by letting some of the Si'S coin
cide. 

We have presented our results in such a way that they 
are ready for generalization. Indeed, it is quite obvious how 
to generalize the definitions of the matrices X 2, Y2, l:2, H 2, 

D2, r 2, etc. to Xm,Ym, ... , etc. for any positive integer m. 
Using these matrices, we shall give the formulas for the gen
eral N-soliton transformations and prove them by induction 
in the following section. 

III. N-SOLITON TRANSFORMATIONS 

Let us state our main result as a thoerem. 
Theorem: Let Q, g be a solution and let U(,;S) be an 

integral ofEq. (4), properly normalized. Choose m complex 
constants sl, ... ,sm and m complex constant matrices 
XI(OI, ••• ,xm (0) of ranks ql, ... ,qm and dimensions 
nXql, ... ,nXqm' respectively. Let 

then 

where Nm = ql + .,. + qm' r m (A), and l:m are defined as 
in Eqs. (17) and (24), is also a solution. The corresponding 
generating function U m ( • ;S) is given by 
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Um(';S) = II --' U(,;S) 

i= I A. - Ili 
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(34) 

Before proving the theorem, let us also define the follow
ing useful quantities: 

- -2 2 -I Qm = Q- (r -A m+ 1 )QYmDm (Am+t> 

Xl:,;;-ID,;;-I(Am+I)Y~Q, (35) 
A 2 T 

Pm = (1- Ym-10'(rm-d/lom»)Y m-IQ) 
T- I XXm(XmQm_1Xm)-

XX~Qm_d1- ym_ 1r,;;-2. 1 (Am)Y~_IQ), 
(36) 

Equations (35) and (36) are natural generalizations of Eqs. 
(13) and (14), respectively. 

The theorem will be proved by induction and the main 
steps will be presented in a series of lemmas. Assuming the 
theorem is true for m, we shall construct Qm + I' gm + I' and 
U m + I ( • ;S) by doing a one-soliton transformation. As in the 
two-soliton case, we first construct 

This requires computation of the inverse of 
(1 - Ymr m (A)-IY~Q). We have the following. 

Lemma 1: 

The proof relies on the following identities: 

l:,;;-IHm (A) -Hm (A)l:,;;-I = l:,;;-IHm (O)-IY~QYml:';;- 1, 
(40) 

(41) 

which are valid for all m. The identity (40) is easily verified 
by multiplying on both sides of each term with l:m and com
puting the ijth block while identity (41) follows from the 
definitions. A simple computation then shows that Lemma 1 
is true. 

Next we show the following. 
Lemma 2: 

Um (,;S) = o1Um (';S»)Qm 

or, equivalently, 

(1 - Ymr m (A)-IY~Q)(l - Ymr m (O)-IY~Q) 
= 1- Ymfm(A)-IY~Q. 

(42) 

(43) 

The proof is again a simple computation using the transpose 
of the identity (40). 

Substituting_Eq. (42) intoEq. (38) and usingEq. (37), 
we can identify Qm. 

Lemma 3: 

Qm = Q(l - Ymf m (Am+ I )-IY~Q) 
A T 

X (1- Ymo1r m (Am+ I »)Y mQ) (44) 

or, equivalently, 
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(1- Ymfm(lt)-IY~Q)(1- Yma{rm(A»)Y~Q) 
= 1- (r-A2)YmDm(A)-I~,;IDm(A)-IY~Q. 

(45) 

This is also easily verified using the identity (40). 
Now Qm (Sm + I) can be expressed in terms of Qm. It is 

then easy to see that Eq. (36), when replacing m by m + I, 
gives the correct formula for Pm + 1 . With Pm + I' we can now 
compute U m + 1 ( . ;s). As in the two-soliton case, we first es
tablish the relations. 

Lemma 4: The (m + 1), (m + 1) blockof~';~1 is 

[~,;~ 1 ]m+ I,m+ 1 = (r - A;'+ 1 )(X~+ 1 QmXm+ 1 )-1 

(46) 

and 

det ~m+ 1 = det ~m 'det(r 1 2 X~+ 1 QmXm+ I)' 
-A m + 1 

(47) 

The proof follows from the definition of Qm in Eq. (35) 
and the lemma of the last section, i.e., Eqs. (18) and (19). 

Now we can computegm + 1 using the induction hypoth
esis equation (33), the formula for one-soliton transforma
tion equation (7), and the formula for Qm(Sm+I). The 
straightforward computation proves the theorem for gm + 1 . 

Finally to complete the construction of U m + 1 ( ';S), we 
have the following. 

Lemma 5: 

(1 - Ymr m (A)-IY~Q) (1 -Pm+ 1 + ~ =~::: Pm+ I) 
= 1- Ym+ Ir m+ I (A)-Iy~+ IQ (48) 

or, equivalently, 

1- Ymrm(A)-IY~Q= Jl (I-Pi + ~ =~: p) Vm. 

(49) 

The proof of Lemma 5 is quite straightforward. We ex
pand both sides of the equation. When expanding the right
hand side, we use the lemma of the last section to separate 
~ -II into the (m + 1),(m + 1) block, (m + 1),i blocks, m+ 

i,(m + 1) blocks, and the rest. Then one collects terms and 
shows that the two sides are equal. 

With this lemma, the theorem for U m + 1 , Qm + 1 is easily 
established. 
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IV. DISCUSSION 

There are other ways to obtain the formulas for general 
N-soliton transformations than to iterate the one-soliton 
transformation. For example, one may use the method of 
soliton correlation matrix introduced by Hamad et al.9 

However, in those approaches, it is usually difficult to obtain 
the correct normalization and to obtain the formula for gm' 
What we have achieved is essentially to provide a series of 
identities so that the different approaches can be bridged. 

In this respect, it is perhaps appropriate to mention that 
our r(A) -I forms the backbone of the soliton correlation 
matrix of Ref. 9 consequently generalizing their construc
tion for sigma models to the present case.2 

We should also mention that a lot of work has been done 
in the four-dimensional case as referred to in I. In particular, 
BZ had worked out the general N successive rank-l soliton 
transformations in four dimensions in their original works.4 

As explained in I, our interest in the soliton transforma
tion stems partly from the possibility of using them to gener
ate solutions in the vacuum sector. This can be achieved by 
letting the s-plane poles in the BZ soliton transformations 
coincide and at the same time taking suitable limits of Xi (0) 

associated with each pole. An example of this in the four
dimensional case is given in Ref. 10 where a confluent double 
soliton transformation was carried out. The higher-dimen
sional case is much more complicated and is currently under 
investigation. 
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The Einstein perfect-fluid equations for a fluid with "energy density E = pressure 
p + constant" equation of state are considered ab initio for space-times with two hypersurface 
orthogonal, spacelike, commuting Killing fields. Gauge conditions compatible with the field 
equations are imposed while the fluid is described by means of a stream potential. Contrary to 
the vacuum Einstein equations, the gauge functions cannot be specified in early stages of the 
analysis. Instead, the problem is described by a system of five (coupled) partial differential 
equations for the two gauge functions, the conformal factor of the two-dimensional geometry 
orthogonal to the two Killing fields, a scalar determining the norms of the Killing fields, and 
the stream potential of the fluid. It is remarkable that the last two scalars satisfy conjugate 
equations in the sense that each of them is ~ potential for the other. By using this conjugation, 
a subcase of the problem is eventually reduced to a system of two highly nonlinear equations 
for the two gauge functions. This system is explicitly solved, leading to three distinct families 
of solutions. To complete the solution for each family one has to solve a second-order, linear, 
hyperbolic equation and perform certain quadratures. 

I. INTRODUCTION 

One can possibly say with some confidence that in the 
last ten years the vacuum Einstein equations with two com
muting Killing fields have been put under control. And one 
clear message from all this effort is that whatever progress 
can be made in studying the vacuum Einstein equations, it 
can also be readily achieved for the Einstein-Maxwell elec
trovacuum equations. 

Another equally interesting generalization would be to 
treat the Einstein-hydrodynamic equations for the gravita
tional field coupled with a perfect fluid. Here the message is 
different, namely that the perfect fluid equations are much 
more difficult, and rumor has it that while the Einstein and 
the Maxwell equations are God-given, the perfect-fluid 
equations are man-made. 

Two particular cases distinguish themselves as "easy" 
among the perfect-fluid solutions with two commuting Kill
ing fields. The stationary axisymmetric dust (pressure 
p = 0) solutions! and the perfect fluids with two spacelike 
Killing fields and a stiff (energy density E = p) equation of 
state.2 In the latter case, in fact, the equations reduce3.4 to the 
vacuum Einstein equations and to a linear second-order par
tial differential equation for the "stream potential" of the 
fluid; and the two problems can be solved independently. 
Except for these two cases, essentially all the other known 
perfect-fluid solutions2

•
s-and they are not that many

with two commuting Killing fields have been obtained by 
making the additional requirement that the space-time also 
admits a Killing tensor (or imposing some other algebraic 
condition on the curvature), thus obtaining an overdeter
mined system of equations. But then there is no control on 
the form of the equation of state that the fluid satisfies and, to 
no one's surprise, it usually turns out to be unphysical. 

Our far-reaching objective is to change this unsatisfac
tory situation in perfect fluids. And as a small step forward 
in that direction, we report in this paper a method for study
ing and solving perfect fluids with two spacelike, hypersur-

face orthogonal Killing fields satisfying the simplest less
than-extremely-relativistic equation of state, 

E = P + k, k = const . (1 ) 

Three families of solutions, each enjoying the freedom of the 
solutions of a second-order linear hyperbolic equation, are 
obtained. 

There is more in our objective than gaining experience 
and obtaining solutions with perfect fluids. Solutions with 
two spacelike and hypersurface orthogonal Killing fields de
scribe inhomogeneous cosmological models as well as the 
interaction region resulting from the collision of two plane 
gravitational and hydrodynamic waves with linear polariza
tions.6

•
7 Recently we have shown4 that the collision of mass

less dust may result in the creation of a massive fluid which 
satisfies the extremely relativistic E = P equation of state. 
What we would like in a next step, therefore, would be to 
consider a collision resulting in the creation of a massive 
fluid with the simplest, but not extremely relativistic, equa
tion of state E = P + const. Since we are mainly interested, at 
this stage, in learning how to deal with more involved, prede
termined equations of state, we decided to put aside the addi
tional complications arising from failing to assume that the 
two Killing fields are hypersurface orthogonal. We plan to 
return to this problem by considering particular solutions of 
the three families obtained in Sec. V and studying their phys
ical interpretations. 

II. THE HYDRODYNAMIC EQUATIONS 

For space-times with two spacelike commuting and hy
persurface orthogonal Killing fields the metric is of the 
formS 

(dS)2 = e2V(dxo)2 _ e2r/J(dx!)2 

- e2p.'(dx2)2 - e2p.'(dx3 )2 , (2) 

where a lax! and a lax2 are the two Killing fields and v, "', 
tt2' and tt3 are functions of XO and x 3 only. The metric satisfies 
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the Einstein and the hydrodynamic equations for a perfect 
lluid described by 

Tij = (E + p)uiu) -pi}, 

where 

(3) 

gijuiU i = 1 (4) 

[signature ( + ---) ]. Compatibly with the existence of the 
two Killing fiels we assume that the only nonvanishing com
ponents of the four-velocity of the lluid are UO and u3 and that 
these components as well as E and P depend only on X O and 
x3

• 

First we consider the hydrodynamic equations~4 The 
conservation ofthe energy-momentum Tij;i = 0 gives 

(E + P)ui;iui + u i [ Ui(E + P),i 

+ (E+p)ui;i] -iip,i =0, (5) 

which contracted with Ui becomes 

UiE. + (E+p)U i .. =0. J ,J (6) 

Expressed in terms of ordinary derivatives the last equation 
gives 

UiE'i + [(E+p)/.J -g] [.J -guiL =0, 

where 

.J -g =eV+¢+/l,+/l,. 

We introduce the orthonormal tetrad 

m(O) = eV(dxo), m(l) = e¢(dx l ) , 

m(2) = e/l'(dx2), m(3) = e/l'(dx3) , 

(7) 

(8) 

(9) 

and use the tetrad components u(O) and u(3) of the four
velocity, related to the tensor components by 

and 

U(3) = - U(3) = e/l'u3 = - e-/l,u3; 

Eq. (4) then reads 

(10) 

u~O) - U~3) = 1 . (11) 

We expand Eq. (7) and we express it in terms of the tetrad 
components of the four-velocity of the lluid. We get 

e-vu(O)E,O -e-/l'u(3)E,3 + (E+p)e-(v+¢+/l,+/l,) 

X { [ e¢ + /l, + /l,u] [eV + ¢ + /l,u ]} - 0 (0) ,0 - (3) ,3 - • 

(12) 
A. Assumption that the fluid statlsfles an equation of 
state 

Without specifying it, we now assume that the lluid sat
isfies an equation of state, i.e., a functional relation between E 

andp. We shall be describing it by the relation 

E+p=/(E) (13) 

for some unspecified function! We shall also introduce 

f dE il 1 
In/l(E) = I(E) <=> II = I' (14) 

where, in this section, the dot denotes differentiation with 
respect to E. Either of the functions I and II determines 
uniquely the equation of state. 
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Equation (12) can now be written in the following two 
equivalent forms: 

e¢+/l, +/l,u(O) E,o + I(E) [e¢+/l,+/l,u(O) ],0 

- eV+ ¢+Il2U(3) E,3 - I(E) [ev+ ¢+Il2U(3) ].3 = 0, 

(15) 

or 

[ e¢+ /l, + /l'u(O).h] ,0 - [eV + ¢ + /l'u(3).h b = 0 . (16) 

Clearly, Eq. (16) is solved by introducing the "stream" po
tential t/J. Thus setting 

e¢+/l,+/l,u I' - J. eV+¢+/l,u I' _ J. 
(O)J 1 - "',3' (3)J 1 - "',0 , (17) 

Eq. (16) is satisfied by virtue of the existence of t/J. 
Next we tum to Eq. (5), which, in the presence of its 

contracted version (6), simplifies to 

. (E+p)UiUi;) =P,i - uiu}p,j; 

expressed in tetrad components it also reads 

(18) 

u(b)u(a)l(b) = [lI(E + p)] [p,(a) - Uta) U(b)p,(b) ] , 
(19) 

where the bar denotes the intrinsic derivative, defined in Ref. 
9, p. 37 (this book will be referred to hereafter as MT). 
Nontrivial equations are obtained for a = 0 and a = 3. Ex
panding Eq. (19) and using the expressions for the rotation 
coefficients listed in MT, p. 82, Eq. (91), we obtain, respec
tively, 

e - vu(O) u(O),O - e - /l'U(3) U(0),3 

- e-/l'Y,3U(0) U(3) + e-vJL3,oU~3) 
= [lI(E+p)] [ -e-vu~3)P,O + u(0)u(3)e-/l'p,3] 

(20) 

and 

- e-/l'u(3) U(3),3 + e-vu(O) U(3),O 

+e- vJL3,OU(3)U(O) -e-/l'Y,3U~0) 

= [lI(E + p)] [e -/l'U~0)P,3 - u(3) u(O)e - Vp,o] . 

(21 ) 

By subtracting Eqs. (20) and (21) and dividing by u(O) 

- U (3) we obtain 

e- vu(O) [In(u(O) - u(3»] ,0 - e-/l'u(3) [In(u(O) - U(3»] ,3 

+ e-/l'Y,3U(0) - e- vJL3,OU(3) 

= [lI(E + p) 1[ e- vu(3)p,O - u(O)e-/l'P,d ' (22) 

while by adding them and dividing by u (0) + U (3) we obtain 

e - vu(O) [In(u(O) + u(3) )] ,0 - e -/l'U(3) [In(u(O) + u(3) )] ,3 

- e-/l,u(O) Y,3 + e- vJL3,OU(3) 

= [lI(E+p)] [-e- Vp,Ou(3) +e-/l'p,3U(0)] ' 

Finally, by adding Eqs. (22) and (23) we obtain 

e-vu(O) [In(u~o) - U~3» ],0 

(23) 

- e-/l,u(O) [In(u~O) - U~3» ],3 = 0, (24) 

i.e., an identity by virtue ofEq. (11). We have shown, there
fore, that there are precisely two independent hydrodynamic 
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equations, namely, Eq. (16) and one of Eqs. (20) and 
(21)-we shall keep Eq. (20). 

We would like to express Eq. (20) in terms of the stream 
potential rfJ introduced by Eqs. (17) . We set 

H = ff"u(o)/I' 9 = ff"u(3)/1 , 

which imply, by using Eq. (11), that 

(25) 

u(O) = H/~H2 - 9 2 , u(3) = 9/~H2 - 9 2
• (26) 

By differentiating the first of Eqs. (25) and the equation of 
state (13) we get 

U(O),O H,o E,o 
--=-----J.L3,O' 

u(O) H I 
U(0),3 H,3 E,3 --= -- - - - J.L3,3 
u(O) H I 

(27) 

and 

P,i = (j - 1)E,i> i = 0,3. (28) 

Finally, by eliminating u(O) and u(3) and their derivatives 
from Eq. (20) we get 

[9,0 - (e"-I"H),3] 

+ I-I(j - 2) [9E,o - e"-I"HE,3] = O. (29) 

B. Assumption that the fluid satlsfles the equation of 
state, E=p+const 

When E = P + k, k = const, Eq. (13) gives that 

I(E) = 2E - k (30) 

and thereforej - 2 = O. Thus the second term of Eq. (29) 
drops out and the hydrodynamic equation simplifies. In fact, 
it will be seen that it can be readily expressed solely in terms 
of the potential rfJ. Thus, by using Eqs. (17) and (25) we find 

H=e-t/J-1'2rfJ,3' 9=ff',-,,-t/J-1'2rfJ,o, (31) 

which, substituted in Eq. (29), give 

[ ff',-1'2-t/J-"A. ] - [e,,-t/J-1'2-I',J. ] =0. (32) 'f',0 ,0 'f',3 ,3 

We shall be referring to Eq. (32) as the stream potential 

equation. Were the geometry known, the solutions of the 
linear equation (32) for rfJ would determine all the quantities 
of the ftuid. Thus Eq. (14) gives 

II = ~2E - k = ~E + P , (33) 

which, combined with Eqs. (11) and (17), gives the energy 
density 

2E - k = E + P = e- 2(t/J+1'2) [rfJ~3e-2I" - rfJ~oe-2"] . 
(34) 

And then, Eq. (17) is used to determine the four-velocity of 
the ftuid, 

u(O) = (e-t/J-1'2-I"/~2E - k) rfJ,3 , 

u(3) = (e-t/J-"-1'2/~2E-k) rfJ,o' 

III. THE EINSTEIN EQUATIONS 

(35) 

The Einstein equations are most easily written in the 
orthonormal tetrad (9). We use (i) the orthonormal com
ponents of the Ricci tensor obtained from Eqs. (10)-( 17) of 
Ref. 8, (ii) Eqs. (10)-( 13) of Ref. 4 giving the tetrad com
ponents of the Ricci and the energy-momentum tensor, and 
(iii) thatG(a)(b) = - 2 T(a)(b)' The resulting equations are 
manipulated as described in Ref. 10. With the notation 

/3 = '" + J.L2' X = ff'2 - t/J , ( 36 ) 

we get the Einstein equations [see Ref. 4, Eqs. (19)-(23)] 

[ ff"-"(eP) ] - [e"-I',(eP) ] = - 2keP+"+I', (37) ,0 ,0 ,3 ,3 , 

[ eP+I"-" (lnx) ] - [eP+"-I"(lnx) ] =0, (38) ~ ~ ~ ~ 

/3 ,0 ( v + J.L3 ) ,3 + /3 ,3 ( V + J.L3) ,0 

+ [P,o (v - J.L3) ,3 - P,3 (v - J.L3 ) ,0 - 2{3,03 - P,OP,3 ] 

- X,OX,3 _ 4(£ +p)u U e"+I" 
- --2- 0;; (0) (3) , 

X 
(39) 

and 

2{3,3 e"-I', (v + J.L3) ,3 + 2/3,0ff" - "( v + J.L3) ,0 + e"-I', [/3 ~3 + 2{3,3 (v - J.L3) ,3] + ff" - "[P ~ + 2{3,0 (J.L3 - v) ,0 ] 

= 2e -PH e"-I',(eP) ,d ,3 + [ff" - "(ep) ,0] ,o} + (1/r) [e"-I"X~3 + ff" - "r,o] - 4(E + p) (U~o) + U~3) )e"+ 1', • (40) 

Equations (32), (37), (38), (39), and (40) are the basic 
equations of the problem. Recall that k is a constant, which 
shall be assumed to be different from zero. The unknowns 
are rfJ, /3, X, v, and J.L3 and we have the gauge freedom of 
choosing the coordinates X O and x 3

• 

In the vacuum, Einstein-Maxwell electrovacuum, and 
perfect-ftuid solutions with E = P equation of state, the right
hand side ofEq. (37) is zero. This permits the specification 
of the gauge-namely the determination of ep -consistently 
with the field equations at the very beginning, independently 
of X, v + J.L3' and rfJ. The complications of the problem for 
k #OarisebecauseEq. (37) nowcouplesP tov + J.L3andone 
has to consider the entire system of equations and determine 
p, v + J.L3' X, and rfJ simultaneously. 
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Following the literature2
•
3 and compatibility with the 

field equations, we shall adopt the gauge condition 

V=J.L3; (41) 

it would correspond to adopting the Papapetrou9
•
11 gauge in 

the vacuum and electrovacuum cases. For ep we shall as
sume that it separates in the two coordinates X O = t and 
x3 =z: 

ep = A(t)B(z) , (42) 

where A = A(t) and B = B(z) are unspecified functions of 
the indicated variables. The assumption of the separability of 
ep has been proved useful in the considerations of the vacu
um and electrovacuum equations, leading to the standard 
forms of the Ernstl2 equation. The four Einstein equations 
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(37 )-( 40) and the stream potential equation then reduce to 

2ke2v = ..!!.:.. _ A ( 43 ) 
B A' 

A-I [A(lnx)" L - B- 1 [B(lnx),z Lz = 0, (44) 

2A 2B' AB' 
-v +-v A ,z B ,I AB 

X,tX,z 4{ + ) 2v (45) =--2-- E P u(t)u(z)e , 
X 

B' A A2 B" 
4-v +4-v +-+-B ,z A ,I A2 B2 

(A Btl) 1(2 2) 
=2 A +""B + X2 X,t +X,z 

-4{E+p) (u~t) +u~Z»e2v, (46) 

A{A- I t,6,t)" -B{B- I t,6,z),z =0, (47) 

where now a dot or a prime denotes differentiation with re
spect to tor z, respectively. Moreover, in the gauge ( 41) and 
( 42) the line element reads 

{dS)2 = e2v [{dt)2 _ (dZ)2] 

- AB[X- I {dxl
)2 + X{dX2)2] • (48) 

In the present variables the fluid's quantities are determined 
from the stream potential by [Eqs. (34) and (35)] 

-2v 
2E-k=W (t,6~ -t,6~), 

(49) 
u(z) = t,6,,1~t,6~z - t,6~ . 

Finally, we express the right-hand sides of Eqs. (45) and 
( 46) in terms of t,6. They become 

and 

2A 2B' AB' X,tX,z 4t,6,tt,6,z 
AV'z +""BV,I - AB =----xz- A2B2 

4B' v + 4A v + ( A 
2 
+~) _ 2( A +..!!.:..) 

B,z A ,t A2 B2 A B 

X~t + X~ 4{t,6~, + t,6~z) 
= X2 A2B2 

(50) 

(51) 

To summarize, we have reduced the problem on hand to 
solving the system of the five equations (43), (44), (4 7), 
(50), and (51) for the unknowns X, t,6, and v, which are 
functions of t and z, and for A = A(t) and B = B{z). The 
line element is given by the expression (48) while the quanti
ties of the fluid are obtained from Eqs. (49). The difficulty of 
the problem is apparent: all five equations of the system 
should be considered simultaneously. 

IV. CONJUGATE EQUATIONS 

Multiplied by AB, Eq. (44) can be written as a total 
divergence and it can be "solved" by introducing a potential 
function G, 

AB(lnX),t = G,z, AB(lnx),z = G,I . (52) 

Then, the existence of X implies the integrability condition 

(G"IAB)" - {G,z/AB),z = 0, (53) 
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which is precisely the stream potential equation (4 7). 
Although they satisfy the same (linear, hyperbolic) 

equation, t,6 and G generally would be different solutions of 
this equation. We shall restrict our considerations, from now 
on, only to perfect-jiuid solutions for which G and t,6 are pro
portional, 

(54) 

with a constant proportionality factor. By using Eqs. (52) 
and (54) we find that the right-hand sides of Eqs. (50) and 
(51) become 

( 2 4) t,6"t,6,z d (c
2 

- 4) (,/,2 ,/,2) (55) 
c - A2B2 an A2B2 '1'" + 'I',z , 

respectively; and by choosing c = ± 2, the unknowns X and 
t,6 drop out from Eqs. (50) and (51) and the problem simpli
fies considerably, We shall adopt the choice c = + 2. 
[c = - 2 amounts to changing X-X- I which, by the 
expression (48), corresponds to the mere interchange of the 
Killing fields a I axl and a I ax2.] The field equations now 
become 

2A 2B' AB' 
AV'z + ""B v" = AB' 

(56) 

4B' 4A (A Btl) (A2 B") -v +-v =2 -+- - -+- , B ,z A ,t A B A 2 B2 
(57) 

(58) 

supplemented by Eqs. (43) and (47). Note that the original 
system decouples, providing three equations-Eqs. (43), 
(56), and (57)-for the unknowns A(t), B{z), and v(t,z) , 

The next step is to eliminate v from Eqs. (56) and (57); 
it can be readily achieved since v can be determined algebrai
cally from Eq. (43). The price that we pay for the elimina
tion of v is that we increase the order of Eqs. (56) and (57) 
from second to third. We obtain 

! C;;y -! (!} = ~! (~' -!), 

2:' (~'y _ 2: (!} 
(59) 

(6O) 

The strategy for solving the problem should now be ob
vious. First we should solve Eqs. (59) and (6O) for the gauge 
functions A{t) and B{z). Then v will be determined alge
braically from Eq. (43). Next, we should solve, for the ob
tained A and B, the linear equation (4 7) for the stream po
tential t,6. And finally, we should determine X from Eqs. (58) 
via quadratures. From the form of the linear equation (4 7) it 
is obvious that it admits separable solutions. The difficult 
step is, therefore, to solve Eqs. (59) and (60) for the two
gauge functions. 
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v. DETERMINATION OF THE GAUGE FUNCTIONS 

We start with the remark that, since A = A(t) and 
B = B(z), Eqs. (59) and (60) are overdetermined. Thus, 
although they are quite involved, the chances that we might 
be able to solve them are quite good. But there also exists the 
chance that they may admit no nontrivial solution. -

To simplify the notation we set 

A=exp[P(t)], B=exp[Q(z)]. (61) 

After some reductions we find that the variables in Eq. (59) 
separate, leading to the two ordinary differential equations, 

(F)-I(P + p2) __ (P + p2) = a, 

(Q')-I(Q" + Q")' - (Q" + Q") = a, 
(62) 

where a is an (undetermined) separation constant. In addi
tion, Eq. (60) becomes 

2Q'(Q" + Q"), - 2F(P+ p2)_ 

= (Q " + Q" _ P _ P 2) (2P + p 2 + 2Q " + Q ") , 
(63) 

or, after eliminating the third derivatives by virtue of Eqs. 
(62), 

(P + P2)(2P _ p2) _ (Q" + Q ")(2Q" _ Q ") 

+p2Q"_PQ'·+2a(Q,·_p2)=0. (64) 

Since Eqs. (62) and (64) involve only the derivatives of 
P and Q we can reduce their order by setting 

P=x=x(t), Q'=y=y(z). (65) 

Equations (62) then become 

(x + x 2 + a)- - x(x + x 2 + a) = 0, 

(y' + y2 + a)' _ y(y' + y2 + a) = 0, 

while Eq. (64) simplifies to 

2(x - y')(x + y') 

(66) 

+ (X2_y2)(X+Y' _x2_y2_2a) =0. (67) 

In the notation of x and y Eq. (43) reads 

2ke2v = y' + r - x - x 2 . (68) 

The simplest solution of Eqs. (66) is x + x 2 + a = 0, 
y' + y2 + a = 0, which, however, gives 2ke2v = 0; so it is 
unacceptable for our present considerations. 

We transform Eqs. ( 66 ) to integrodifferential ones. 
They become 

x= -x2-a+rl/, y'= -r-a+rz!, (69) 

where 

1 =I(t) = exp[fx(t)dt ] , 

J=J(z) = exp [fy(Z)dZ] , 
(70) 

and rl and r2 are integration constants. We can now elimi
nate the first derivatives of x and y from Eq. (67). A lot of 
simplifications occur. We finally obtain 

rl/ (3x2 + y2 + 4a) - rz!(x2 + 3y2 + 4a) 

909 

= 2(-,11 2 - ~J2) . (71) 

The aim now is to obtain additional integrability condi-
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tions from Eqs. (69) and (71). By differentiating Eq. (71) 
with respect to t and z and using Eqs. (69) to eliminate the 
first derivatives of x and y we obtain 

rl/ (3x2 - r + 2a) - 2rz!(x2 + a) = 2rl/ (rll - rz!) , 
(72a) 

rz!(3y2 - x2 + 2a) - 2rl/(y2 + a) = 2rz!(rz! - rl/) . 
(72b) 

The difference ofEqs. (72) gives, once more, the condition 
(71) while their sum gives 

(rll - rz!) [X2 - y2 - i (rll - rz!)] = O. (73) 

For a nontrivial solution the terms in the squared brackets of 
Eq. (73) should vanish. Since x =x(t) andy=y(z) this 
requirement leads to the two conditions 

(74) 

Compatibility of Eqs. (69), (70), and (74) requires that the 
constant in Eqs. (74) should be - a. Thus we obtain 

x2+a=irl, y2+ a =irz!. (75) 

It is then straightforward to show that the two equations 
(75) imply Eqs. (69) and (71) and therefore they are equiv
alent to the problem on hand. Hence, we do not have to 
consider additional integrability conditions. 

It is not difficult to integrate Eqs. (75). They lead to 
three distinct families of solutions, according to the sign of 
the parameter a. For negative a we obtain 

x = - 2b coth(bt + AI) , 

y= -2bcoth(bz+A2), a= -4b 2 , 

P= - 21n sinh(bt +A I ), 

Q = - 21n sinh(bz +A2 ) , 

A = sinh- 2(bt +A I ), B = sinh-2 (bz +A2) , 

(76) 

A I and A2 are integration constants. Then from Eq. (68) we 
can evaluate e2v and write the metric. It reads 
(dS)2 = 3b 2k -I [sinh-2 (bz + A2) - sinh-2(bt + AI)] 

X[(dt)2- (dZ)2] -sinh-2(bt+A I) 

Xsinh- 2 (bz + A2) [X- I(dx l )2 + X(dX2)2] . 

(77) 
Obviously, the parameters b, AI' and A2 can be absorbed in 
redefinitions of t and z. The parameter k of the equation of 
state ( 1) can also be absorbed but we shall retain it, keeping 
in mind that only its sign is relevant. Hence, without loss of 
generality, the family (76) for a < 0 is family (i): 

(x = - 2 coth t, y = - 2 cothz) , 

(P= -21nsinht, Q= -21nsinhz), (78) 

(A = sinh-2 t, B = sinh-2 z) , 

with line element 

(dS)2 = (3/k) (sinh- 2 z - sinh-2 t) [(dt)2 - (dZ)2] 

- sinh-2 t sinh-2 z[X- I(dx l )2 + X(dX2)2] . 
(79) 

Similarly we find, for a > 0, family (ii): 

(x=2tant, y=2tanz), 

(P= -21ncost, Q= -21ncosz), 
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(A = COS- 2 t, B = COS- 2 z) , 

with line element 

x [(1 - ?f )2(dx l )2 + (1 + ?f )2(dx2)2] 

considered in Ref. 10, Sec. 6 with 

(84) 

(ds)2 = (3Ik)(cos- 2 Z - cos- 2 t) [(dt)2 - (dZ)2] 
U=ev, fTD cP __ X-I ~X __ 1 +?f . V = "AB, @ '<-r' 

X+l 1-?f ~ cos- 2 tcos- 2 Z [X- I (dx l )2 + X(dX2)2] , (81) 
(85) 

and for a = 0, family (iii): 
Equation (124) of Ref. 10 gives a suitable null basis. Unfor
tunately, in Ref. 10 the Newman-Penrose quantities were 
only obtained for a particular choice of V which does not 
apply in nonvacuum or nonelectrovacuum cases that we are 
now considering. So we shall give the Newman-Penrose 
quantities for any value of V, but for real ?f. 

(x = - 21t, Y = - 2/z) , 

(p= -2Int, Q= -2Inz), (82) 

(A = t -2, B = Z-2) , 

with line element 

(ds)2 = (3Ik)(z-2 - t -2) [(dt)2 _ (dz)2] 

- (tZ)-2 [X- I (dx l )2 + X(dX2)2] . (83) 

VI. DESCRIPTION OF THE SPACE-TIME IN THE 
NEWMAN-PENROSE FORMALISM 

The metric (48) is of the form 

The only non vanishing spin coefficients are 

(7 = ?f,t + ?f,z , A = ?f,z - ?f,t 

U {i(1 - ?f2) U {i(l - ?f2) 

V t + V z V t - V z p- ' , J.l-' , 
- - uv{i' - uV{i , 

(86) 

U t +UZ E-' , 
- 2U 2{i' 

U z -Ut 
y=' , , 

2U 2{i 
(dS)2 = U 2[ (dt)2 - (dZ)2] _ [V2/(1 _ ?f2)] and the only nonvanishing Weyl and Ricci scalars are 

'110 = (~,t + ?f,z2) {(In!::) + (In!::) + ?f,tt + ?f,zz + 2?f,tz + ?f (?f,t + ~,z) } , 
U (1 - ?f ) U ,t U ,z 2 ( ?f ,t + ?f ,z ) 1 - ?f 

(87a) 

'114 = (~,t - ?f,z2) {(In!::) _ (In!::) +?f ,tt + ?f,zz - 2?f,tz + ?f (?f,t - ~,z) } , 
U (1-?f ) U ,t U ,z 2(?f,t - ?f,z) 1-?f 

(87b) 

'112 = 6~2 [(In ~}tt -(In ~}J + 3:;:~_?f;2)' (87c) 

<I> _ (V,t + V,z) (U,t + u,z) v,tt + v'zz + 2 v,tz ( ?f ,t + ?f ,z ) 2 

00 - U3V - 2U2V 2U2(1 _ ?f2)2 ' 
(87d) 

<I> _ (V,t - V,z)( u,t - u,z) v,tt + v'zz - 2 v,tz ( ?f ,t - ?f ,z ) 2 

22 - U3V 2U2V 2U2(l _ ?f2)2 ' 
(87e) 

1 2 2 ?f~ - ?f~t 
<1>11 = --2 [On U) zz - (In U) tt + (In V) t - On V) z] + 2 2 2 ' 

4U ' , , '4U (1 - ?f ) 
(87f) 

?f zz - ?f tt ?f (?f2z - ?f2t) ?f,z V,Z - ?f,t V,t 
<I> =' '+ ' '+ ---"'::--'-----'--:-'--20 2u2(l _ ?f2) U 2(l _ ?f2)2 U 2V(l _ ?f2) , 

(87g) 

1 [I U I U)] 1 [(V3/2) (V3/2)] ?f~t - ?f~ 
A = 12U 2 (n ),tt - ( n ,zz + 9U 2V 3/2 ,tt - ,zz + 12U2(l _ ?f2)2 (87h) 

For the presently considered case 

U= ~ (~' - !YI2, V= (AB)I/2. (88) 

In all previous considerations of space-times with two spacelike Killing fields (vacuum, electrovacuum, E = P fluids), V 
was fixed by gauge while the determination of U had to wait on the previous determination of ?f as a solution of the Ernst 
equation. In the presently considered problem, however, both U and Vare determined from the gauge functions before the 
specification of ?f. This situation opens the possibility of simplifying the expressions (87) for any ?f. The simplifications 
which occur are really remarkable. 

910 

For the three families of solutions (78), (80), and (82) we find, after some lengthy reductions, that 

(l/U 3V) (V,t ± V,z) (U,t ± U,z) - (l/2U 2V) (V,tt + v'zz ±2V,tz) =0, 

(In( V /U»),tt - (In (V /U»),zz = 0, 

(In U),zz - (In U),tt + On V),t 2 - (In V),z 2 = 0, 
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(89b) 

(89c) 
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(89d) 

and 

{ 

- coth(t ± z), for family (i), 

( In 1::) ± (In 1::) = - cot(t ± z), for family (ii), 
U ,I U ,z _ U±Z)-l, for family (iii). 

(90) 

We conclude, therefore, that for the three families of solutions obtained in the present paper the expressions for the Weyl and 
Ricci scalars '11 2, <1>00' <1>11> <1>22' and A simplify considerably to 

_ 5'~1 - 5'~z <I> _ (5',1 + 5',z)2 
'112 - 3u2(1- 5'2)2' 00 - 2u2(1- 5'2)2' <1>22 = 

(5',1 - 5',z )2 
2U 2 ( 1 _ 5'2)2 ' 

(91) 

while '110, '114 , and <1>20 are given by Eqs. (87a), (8Th), (87g), and (90). 

VII. DISCUSSION 

The most interesting conclusion arising from the pres
ent work is that the method of solving the Einstein perfect
fluid equations for E = P + constant equation of state is 
completely different-almost the opposite, I would say
from the method used in solving the Einstein equations ei
ther in the vacuum case or when gravity is coupled to a per
fect fluid with E = P equation of state. The first step in both 
considerations is, of course, to simplify the metric according 
to the symmetries of the problem. Then, in the vacuum case, 
we proceed as follows: (i) we solve one of the field equations 
by imposing a suitable gauge condition, (ii) we solve a linear 
partial differential equation (the specialization of the Ernst 
equation to the case of hypersurface orthogonal Killing 
fields), and (iii) we determine, by straightforward quadra
tures, the conformal factor of the two-dimensional geometry 
orthogonal to the two Killing fields. Moreover, in the pres
ence of a fluid with E = P equation of state, steps (ii) and 
(iii) are performed twice, the second time for the stream 
potential of the fluid and its contribution to the conformal 
factor. 

For a fluid with E = P + constant equation of state, on 
the other hand, we had to devise a completely different strat
egy. In this case the main source of difficulty is that we can
not choose in early stages the gauge and simultaneously 
solve one of the Einstein equations, because the "gauge fix
ing" equation does not decouple from the remaining field 
equations. Instead, the strategy now is the following: (i) we 
use the gauge fixing equation to express algebraically the 
conformal factor in terms of the gauge functions A and B; 
(ii) we use the two linear equations for the conformal factor 
(the ones leading to the quadratures in the vacuum case) 
and we eliminate the conformal factor, obtaining a system of 
two coupled equations for the gauge functions A and B; and 
(iii) we solve the provious system for A and B. This task has 
to be done only once and it has been performed in the present 
paper; (iv) the conformal factor is then easily obtained; (v) 
we have to solve the linear partial differential equation, cor
responding to step (ii) of the vacuum case, to determine the 
norms ofthe two Killing fields; and finally, (vi) the stream 
potential, which determines the characteristics of the fluid, 
is obtained by straightforward quadratures. Steps (v) and 

911 J. Math. Phys., Vol. 28, No.4, April 1987 

~I----------------------------------------
(vi) can be interchanged: we can solve a linear equation for 
the stream potential and determine the norms of the Killing 
fields by quadratures. 

It should be emphasized that our considerations do not 
cover all the solutions of E = P + k fluids with two hypersur
face orthogonal Killing fields. Instead, the obtained families 
of solutions exhaust those fluids satisfying, in addition,. the 
separability condition (42) for the gauge functions and the 
assumption (54) that the potential G and ¢J are proportional. 
The condition (54) means that while the fluid is freely dis
tributed (subject, of course, to the field equations), the gra
vitational field is determined uniquely from the fluid, or vice 
versa. In the general case one expects that each one-the 
fluid and the gravitational field-would have infinite de
grees of freedom, corresponding to the solutions of the two 
second-order, linear, hyperbolic equations (44) and (47). 

That the E = P + constant and the E = P fluids are 
solved completely differently is reflected in that neither of 
the three families of solutions obtained in the present paper is 
connected continuously with solutions with E = P fluids. 
Thus, in particular, we cannot set the constant k of the equa
tion of state equal to zero and get solutions with E = P equa
tion of state. 

Having determined the gauge functions, the eventual 
solution of the presently considered problem looks very sim
ilar to the solution of the vacuum Einstein equations with 
two hypersurface orthogonal Killing fields, the Weyl2,13 so
lutions. In both cases one has to solve one second-order lin
ear partial differential equation--elliptic for static solutions, 
hyperbolic for solutions with two spacelike Killing fields
equations which can be solved by separation of variables. In 
addition, to complete the metric, one has to perform certain 
quadratures. The details and the physical interpretation of 
each solution, of course, would depend on the particular so
lution of the linear equation that has been chosen, a problem 
that we do not address here. However, an important differ
ence between the Weyl and the presently considered solu
tions should be stressed: although the Weyl solutions are all 
the vacuum solutions (with the appropriate symmetries), 
the presently considered solutions are only those fluid solu
tions satisfying the requirements (42) and (54) for the sep
arability of the gauge function and the proportionality of the 
gravitational and the fluid potentials. 
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The anharmonic oscillator driven by Gaussian noise is studied in the limit of weak damping 
using the direct perturbation (DPM) and Markov approximation (MAM) methods. Mean 
values are obtained to first order in the anharmonic coupling constant g. From a careful 
treatment of the high-frequency behavior it is concluded that to first order in g the DPM takes 
high-frequency contributions into account whereas the MAM does not. while both agree if 
high-frequency contributions are not important. It is also shown that both methods give the 
same results to second order in g for the quartic anharmonic oscillator. The spectral density of 
the noise used in stochastic electrodynamics is considered as a particular example. 

I. INTRODUCTION 

In previous papers 1.2 the effect of a nonwhite Gaussian 
noise on the motion of a nonlinear oscillator was considered. 
The first reference used the direct perturbation method 
(DPM) taken over from classical perturbation theory.3 The 
second reference used the Markov approximation method 
(MAM) based on an approximate Fokker-Planck equation 
in terms of the constants of the deterministic motion.4

•
s 

The results in Refs. 1 and 2 referred explicitly to the 
quartic anharmonic oscillator in stochastic electrodynam
ics6 (SED). meaning that the charge moves in a classical 
potential with X2 and X4 terms while being driven by a sto
chastic electric field with spectral density given by 

S., (cv) = IilcvI 3/31Tc3
• (1.1) 

The fact that the DPM and the MAM should have wide 
applicability makes these results disturbing in a wider con
text because different answers were obtained. 

In this paper we will therefore analyze the nonlinear 
system corresponding to a harmonic oscillator perturbed by 
a potentialgV(x): 

x + cv~x + ! V'(x) + T( cv~ + ! V" (X»)x 

=.!...W(t)=f(t). (1.2) 
m 

Here T = :ze2 13mc3 and the equation corresponds to that for 
a charged particle in a stochastic electric field W (t). where 
the damping rX has been approximated by7 T(d Idt)xn , 

wherexn denotes the acceleration when no charge is present. 
Equation (1.2) is thus without runaway solutions. 

The aim of the paper is to compare the two methods, and 
to obtain mean values in the stationary state. in particular 
that of the energy, to first order in the anharmonic coupling 
constantg. We will consider that both the form of Vex) and 
the spectral density of W (t) are arbitrary functions. Con
trary to earlier results. I we will show that the DPM and 
MAM coincide to order g when there are no high-frequency 
contributions from the spectral density of the random field 
W (t). We will also show that these methods give the same 
results to order g2 for the quartic anharmonic oscillator. 

II. THE DIRECT PERTURBATION METHOD (DPM) 

Assuming the standard perturbation expansion 1.3 

x(t) =xo(t) +gxl(t) +g2X2(t) +"'. (2.1) 

one finds the following equations from (1.2): 
.. 2 2' fir) Xo + CVoXo + TCVoXo = \ t , (2.2a) 

•• 2 2' (1 d ) V'(Xo(t») 
Xl + CVOXI + TCVoX I = - + T- • 

dt m 
(2.2b) 

•• 2 2 • (1 d ) V '(xo(t) ) () 
Xl + CVOX2 + TCVOX 2 = - + T- Xl t , 

dt m 

and SO on. 

A. Calculation of <~> 

To order g we havel
•
3 

(X2) ~ (x~) + 2g(XoXI)' 

(2.2c) 

(2.3) 

where <ro} corresponds to a linear oscillator and can be 
obtained by using standard Fourier techniques. 1.3 The result 
is 

<X~) = f-+ .... 1£1:)12 St(cv). (2.4) 

where 

F(cv) = cv~ - al + iTCV~CV (2.5) 

and St (cv ), the spectral density of J, is given by 

St(cv) =_1 J+oo d(}~<f(O)f«(}». (2.6) 
21T - co 

Because of the form of IF(cvW. the integrand in (2.4) is 
strongly peaked about cvo. In Ref. 1 a delta function approxi
mation was used to obtain 

(2.7) 

However, it is important to recognize that this result is 
valid only if there are no high-frequency contributions8 (for 
frequencies ~ T-

I
) to (x~). For example, if we consider 

St(cv) = NTCV
4/(l + ~CV2). (2.8) 
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then 

For CiJ>CiJo, we may write 

1"CiJ4 (1 + ~CiJ2) -I 1" 
=:: 

(CiJ~ - CiJ2)2 + ~CiJ~CiJ2 1 + ~CiJ2 ' 

so that the second term in (2.11) is approximately 

LOO dx 
2N ---2 = N1T. 

o 1 +x 

(2.10) 

(2.11 ) 

Thus the high-frequency contributions are equal to the 
contributions from frequencies CiJ :s; CiJo' 

The problem is that with the delta function one is taking 
the limit 1"-+0 through the integral sign. In this case there is 
no second term in (2.9). It can be shown that this is valid 
when SI(CiJ) <NCiJ2 + r for CiJ>CiJo' where 0 < r < 1 and N is of 
order 1 with respect to 1". This is the case for the spectral 
density of SED, that is given, taking into account the approx
imation leading to (1.2), bys 

_ e2 _ rlilCiJI3 
SI(CiJ) - -2 SIJ'T(CiJ) - ~ 2 (2.12) 

m 21Tm(1 + CiJ) 

It is to be noted that if there exist high-frequency contri
butions, the electromagnetic model described by (1.2) is in
correct. However, equations like (1.2) arise in many con
texts (e.g., the Van der Pol-Duffing equation) not 
associated with radiation damping, so our observations may 
be of more general interest. 

We now consider (x~ I)' We first calculate it following 
the method used in Ref. 1 in order to compare our result with 
the one obtained in Ref. 1. From (2.2b) we have 

f + 00 eiOJ' f+ '" 
XI (t) = dCiJ -- ds 

- '" F(CiJ) - 00 

X-- -=- 1 + 1"- V'(xo(s»), (2.13) e - iOJS ( 1 )( d ) 
21T m ds 

so that 

1 f + '" e
iOJ

' (1 + irCiJ ) - -- dCiJ>-....:......-'--~ 
21Tm - 00 F(CiJ) 

X f-+",'" dsriOJS(xo(t')V'(xo(s»)). 

(2.14 ) 

The second integrand can be simplified by using Novikov's 
lemma which is valid for Gaussian processes9

,IO 

(xo(t') V'(xo(s»)) 

= f+ 00 dU( 8V'(xo(s») )(xo(U)xo(t'», 
-00 8xo(u) 

(2.15) 

so that 

(xo(t ')xI (t» 

= __ 1_ (V" (x
o
» f+ 00 dCiJ e

iOJ
'( 1 + i1"CiJ) 

21Tm - 00 F(CiJ) 

(2.16) 
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We next calculate the correlation function 

f
+ 00 S (CiJ)eicu(,'-s) 

(xo(t ')xo(s» = dCiJ I 2 

- '" !F(CiJ) I 
(2.17) 

In Ref. 1 the same technique of approximating the inte
grand to a delta function was used. Clearly an alternative is 
to use the residue theorem, when SI(CiJ) is analytic, applied 
to the poles 

CiJ± = ± (CiJ~ -~CiJ~/4)1/2+i1"CiJ~/2. (2.18) 

However, one must take care if SI (CiJ) has poles of order 
1"-1, as in the case of (2.8). An analysis of these high-fre
quency contributions will be made below. Assuming that 
these contributions are negligible, we have 

(xo(t ')xo(s» 

( / 3) -1"OJ~I"-'1/2[(S ( )/) (') =:: 1T CiJo e :r CiJo 1"CiJo cos CiJo t - s 

(2.19) 

This expression coincides with Eq. (3.7) of Ref. 1 in the 
limit 1"-+0 as it must (since in Ref. 1 the delta function ap
proximation was used, valid for 1" -+ 0). However (and here 
our present calculations differ from those of Ref. 1), the 
limit should not be taken first when substituting in Eq. 
(2.16) because the term in sin CiJo It' - s I contributes to the 
same order as cos CiJo(t' - s). 

Using 

1 f+ 00 t"'(t - s) (1 + i1"CiJ) 
R(t-s) =- dCiJ--~~-":"" 

21T - 00 F(CiJ) 

=::H(t-s) 
e - 1"~(t - .)/2 

X [sin CiJo(t - s) + 1"CiJo cos CiJo(t - s)], 
(2.20) 

where H is the Heaviside function, and introducing (2.19) in 
(2.16), we obtain (8 = t' - t>O) 

(xo(t ')xI (t» 

1T (V"( » -1"~8/2[ 8( 3 SI(CiJO) =:: --- Xo e COSCiJo ----
mCiJ~ 4 1"CiJo 

1 (SI(CiJO) - CiJaS ;(CiJo») ) SI(CiJO). 8 ] +- ----SlnCiJo . 
4 1"CiJo 2~CiJ~ 

(2.21 ) 

As noted earlier, Eq. (2.21) differs from Eq, (4.11) of 
Ref. 1 because of the inclusion of the sin CiJolt' - sl term. For 
equal times, it reduces to 

(x-Y
I
)-_ _ ~ (V"(xo» [s CiJo S'( )] 

(1'- :r(CiJo) - -4 I CiJo ' 
mCiJg 1" 

Thus we finally have 

(X2)=::(X~)- 21Tg (V"(xo» 
1"mCiJg 

(2.22) 

(2.23) 

This result has been obtained by ignoring the high-fre-
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quency contributions. We now analyze the validity of this 
approximation. 

From (2.16) and (2.17) we obtain 

2 100 

(XoXt) = -- (V"(xo» dw 
m 0 

Sf(W) [w~ - w2 + rw~w2] 
X (2.24) 

[(w~ - ( 2)2 + rw~w2] 2 

This integral I is calculated in the Appendix. Spectral 
densities such thatSf(w) <Nw4+ 'forw>wo, where 0 <r< 1 
and N is of order 1 with respect to 7", are shown to have 
negligible high-frequency contributions to I. In this case I is 
given by (A5) with S = Sf' and we recover (2.23). Compar
ing with the discussion below Eq. (2.11), we see that high 
frequencies contribute to I for spectral densities that are 
more divergent than those which give the same type of high
frequency contributions to (xD. For example if Sf(w) is 
given by (2.8) the high-frequency contributions to (xoXt) 
come only from V" (xo) and not from the integral I. 

B. Calculation of (VI) 

In order to calculate (v2
) we make S = w2Sf in (A5) 

thus giving the result 

(V2)~(Wo) - 217g4 (V"(xo» 
7"mwo 

X [ Sf(;O) _ :0 S;(wo)]. (2.25) 

This can also be obtained by differentiating (2.21) with 
respect to t and t I. According to the analysis made in the 
Appendix, (2.25) is valid as long as there are no high-fre
quency contributions, i.e., if Sf(w) <Nw2 +, for some 
o <r< I and for all w>wo. As concerns (Wo), high-frequen
cy contributions are negligible when Sf(w) <Nw' for w>wo. 
Then, these contributions to (Wo) appear for the Raleigh
Jeans radiation.8 For the spectral density of SED, (2.12), it 
is clear that (v~ ) is divergent. Hence one introduces the elec
trokinetic momentumS (b) Pek' 

From the definition of P ek' 

Pek = -mw~x_gV'(X), (2.26) 

it can be seen that P ek is equivalent to mX, only more regular, 
so that (p~k)/m2 will be the expression (2.25) when there 
are no high-frequency contributions to (v2

). However, it is 
also evident from (2.26) that (P!k) can be finite only when 
Sf (0) = O. This is usually the case in the context of radiation 
theory (Rayleigh-Jeans radiation, zero-point field radiation 
of SED ). We do not give here the explicit calculations, but it 
is straightforward to show that (p~k)/m2 indeed coincides 
with (2.25) when there are neither high-frequency nor zero
frequency contributions. 

C. Calculation of <E> 
The mean energy of the moving charge is given by 

(E) = ~ m(v2) + ~ mw~ (x2) + g( V(x». (2.27) 

Thus if there are no high-frequency contributions, we 
gettoordergfrom (2.7), (2.23), and (2.25), 

915 J. Math. Phys., Vol. 28, No.4, April 1987 

X [ ~ Sf(wo) - ~o S ;(wo) ] + g( V(xo». 

(2.28) 

At this point, it is interesting to consider the special case 
of SED. From the general program for work in this area, 6 

one can ask when does (2.28) agree with quantum mechan
ics (QM). One sees that such an agreement can occur only if 
Sf (w ) behaves like w3 forlow frequencies, for in that case the 
term in square brackets is zero. We will see later within the 
context of the MAM that this is due to the fact that the 
average action is independent of the system to first order in g 
only if Sf(w) behaves like w3

• 

III. THE MARKOV APPROXIMATION METHOD (MAM) 

The Markov approximation method (MAM) is based 
on the observation that the damping and stochastic forces 
are much smaller than the deterministic force due to the 
presence of the small parameter 7". As stated earlier this 
method uses an approximate Fokker-Planck equation ex
pressed in terms of the constants of the deterministic motion. 
Details may be found elsewhere2.4·s; only the few equations 
needed in the development given here will be considered. In 
the case of the one-dimensional anharmonic oscillator the 
only constant of the motion is the energy. The properly nor
malized phase-space probability density is2

•
s 

Wo(E) = cexp[ - fEdE1 GE(E') ], (3.1) 
GEE(E') 

where 

G E = 21T7"mW3 L n4lx" 12, (3.2a) 

" 
(3.2b) 

" 
where w is the frequency and the x" are the Fourier compo
nents of the conservative deterministic motion. 

To first order in g we have that 

(3.3) 

One may develop w in powers of the coupling constant 
[formulas (9.192)-(9.197) of Ref. 11]: 

w~wo(l +~g~i V). 
21T dE jE 

Here 

,( 121rIOJ

O (( 2E ) 112 ) jE V = 0 ds V mw~ cos WaS 

(3.4 ) 

(3.5) 

is the integral of the potential over the unperturbed orbit 
corresponding to the energy E. 

From (3.3) and (3.4) we obtain 

[1 + (2 _ waS;(wo) ) gwo~ i V]. 
Sf(wO) 21T dE h 

G E 7"W~ -GEE 1TmSf (wo) 
(3.6) 
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This permits us to write the phase-space density in the 
fonn 

Wo(E) = Ne-BEexp( -gC£ V), 

where [see (2.28)] 

B = rw~/trmSf(wo) = (E) g-=IO == (E )0- t, 
C = (2 - (waS ; (llJo)/Sf(wo)))wo!2tr(E )0' 

A. Calculation of (X2) 

From (3.7) we find that 

(3.7) 

(3.8a) 

(3.8b) 

(X2) _ Sf! :re- EoI(E)°(1_gV I(E)o -gC ~Eo V)dx dp 

- Sf!: e- E.,I(E)o(1 -gV I(E)o -gC ~Eo V)dx dp 

(3.9) 

with Eo =! mllJ~x2 + (p2/2m). We now calculate the var
ious tenns involved in (3.9). 

First, let us define 

Wo Jf+"" e-E.,I(E)'f(Eo)dxdp==(/(E»o· 
2tr(E)0 - "" 

(3.10) 

Then 

JJ-+",,"" e-EoI(E)otp(Eo)[fEo vldxdP 

(3.11) 

where s is the time along the path. Thus this integral reduces 
to 

= (Vtp)o( ~ )\E)O-I. 

We also have 

m2w~ J J-+ ",,"" x2e - EoI(E )o[ £0 V ]dX dp 

= J J-+ ",,"" p2e - E.,I(E)o[fEo V ]dx dp, 

so that 

J J-+",,"" x2e- EoI(E)0[ fEo V]dXdP 

=ff+co E02 e-E.,I(E)o[! V]dXdP 
- "" mllJo YEo 

(3.12) 

(3.13) 

(EoV)o (2tr)2 (3.14) 
= mllJ~ (E)o -;;;- . 

So finally 

2 (X2)0 - (gl(E)o) (VX2)0 -gC(2trlmw~)(EoV)0 
(x )- . 

- 1- (gl(E)0)(V)0-gC(2trlllJo)(V)0 
(3.15) 
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Now, for order 0, (x,p) is a Gaussian process, so that using 
functional techniques,IO we have 

(VX2)0= (V)0(X2)0+ (V")0(X2)~. (3.16) 

Also, 

(X2)0 = (E )0 = trSf(wo) . 
mw~ rwri 

( 3.17) 

Thus we obtain the same Eq. (2.28) with (x~) given by 
Eq. (2.7). However, since the expressions given by (2.7) and 
(2.28) are only valid ifno high-frequency contributions are 
present, we may conclude that the results obtained by the 
MAM are correct only if no high-frequency contributions 
are present. 

B. Calculation of <~> 

The only difference with the calculation of the previous 
section is the tenn (v2 V)o = (v2)0(V)0 which appears in 
place of (X2 V) o. Thus it is easy to see that the result here 
coincides with (2.25) with (v~) = trSf(wO)/Tw~. Again the 
MAM gives the correct result to first order in g if no high
frequency contributions are present. If we consider P ek in 
order to define (E) the MAM gives the correct result for 
spectral densities satisfying Sf (w ) <Nw2+ r for w > Wo and 
0< r < 1, as is the case for the spectral density of SED, 
(2.12). [Note that for the calculation of (P;k )lm2 one must 
take S = wriS/w2 in (AS).] 

C. A special property of the Cl)a spectrum 

Consider now the spectral density of SED (2.12). In 
this case we have seen that usingPek' (E) = (E)o + g( V)o 
[cf. (2.28)]. Taking into account (2.12), (3.1), and (3.3) 
we have that 

wo=NexP[-JEdE , 2 ] = Ne- UII1
• (3.18) 

w(E') 

Thus J = fz/2, independent of the potential. This result is 
correct to first order in g. 

Note that this pennits a simple calculation of the energy 
through the classical relation 

E= J dJw(J) (3.19) 

combined with (3.4). We find again that 

(E) =wo!2 + g( V)o. 

IV. COMPARISON BETWEEN DPM AND MAM TO 
SECOND ORDER 

(3.20) 

We have shown in previous sections that, if there are no 
high-frequency contributions, the DPM and MAM give the 
same mean values to first order in the anharmonic coupling 
constant g. In this section we compare the two methods tak
ing into account the second order in g for the quartic anhar
monic oscillator V = mx4. 

(A) We first consider the Markov approximation. The 
phase-space probability density is given by (3.1), where 
G E IG EE can be obtained from (3.2). To second order in g, 
G E IG EE contains contributions of the spectral density, Sf' 
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at frequencies given by the first harmonic 3wo and not only at 
frequencies close to w~ : 

G
E 

_ Tw(E) [1 + 9 ( Eg )2 
GEE 1TmS,(w(E») 16 mw~ 

X(9 - S,(
3w

o) ) + O(g3)]. (4.1) 
S,(wo) 

Using2 

weE) O<Wo 1 + 3 -- - - --[ 
gE 69 ( gE )2] 
mw~ 4 mw~ 

(4.2) 

in (4.1), we get the phase-space probability density to sec
ond order in g in the following form: 

W. (E) =Ne-E/(E)O[I_ agE 
2 + a 2 

( gE
2 

)2 
o 2mCd~ (E)o 8 mCd~ (E)o 

P(gE)2 E] -3 mw~ (E)o' 

where (E)o is given by (3.8a) and 

a = 6 - 3wo[S;(wo)/S,(wo)], 

(4.3) 

(4.4a) 

(4.4b) 

From (4.3) we obtain the mean energy to second order in g, 
I 

(E) 0< mnS,(wo) [1 + 1TgS,(wo) 
'TW~ TW~ 

x ( _ 15 + 00
0 

S ;(wo) ) + ( 1TgS,~Wo) )2 
S,(wo) TWo 

( 
5493 819 S ;(wo) + 36( S ;(wo) )2 

X -- - --Wo Wo ---"---
8 2 S,(wo) S,(wo) 

+ 27w~ Sj(wo) + 27 S,(3Cdo) )]. (4.5) 
S,(wo) 8 S,(wo) 

(B) As concerns the direct perturbation method, to sec
ond order in g we have 

(X2)0«X~) +2g(XoXl) +r«~) +2(XoX2»' (4.6) 

From (2.13) it is straightforward to get when V = mx4, 

(~) = 96f_+0000 dw f_+oooo dWI f_+0000dW2IR(wWC(WI) 

XC(w2)C(w - WI - (2) 

+ 144(x~)2 f_+oooo dwIR(wWC(w), 

where [see (2.17) and (2.20)] 

(4.7) 

C(w) = S,(w )/[ (w2 - W~)2 + ~W~W2], (4.8a) 

R(w) = (1 + iTW)/(W~ - w2 + iTW~W), (4.8b) 

and (x~) is given by (2.4). In a similar way we get from 
(2.2) 

(4.9) 

If we consider spectral densities, S,' such that there are no high-frequency contributions, (x~) is given by (2.7), and the 
calculation of the integrals in (4.7) and (4.9) is straightforward, but very cumbersome. We give here just the results 

(4. lOa) 

(4.1Ob) 

f-+ 0000 dw f-+ 0000 dWI R(w)R(WI)C(W)C2 (w - WI) 

1 (1TS,(WO) )3[ 1 69 15 S;(wo) 1 ( S;(WO»)2 
0< w~ TW~ - 32~w~ + 256 - 256 Wo S,(wo) - 128 Wo S,(wo) 

5 2 Sj(wo) 1 S,(3Wo)] 
- 256 Wo S,(wo) + 256 S,(wo) , 

(4.1Oc) 

f +oo dWR2(W)C(W)0<~( 1TS,(~o) )[ __ 1_2 + 1-~wo S;(wo) + w~ Sj(wo) ]. 
- 00 Wo TWo ~wo 32 S,(wo) 32 S,(wo) 

(4.1Od) 

As concerns the last integral in (4.9), it can be obtained from (AS). From (2.7), (4.7), (4.9), and (4.10) we get the 
second-order contribution to (X2) 
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(4.11) 

It is straightforward to check that the same result is obtained by using the MAM from (4.3). We note that a previous 
calculation 12 for a quartic anharmonic asocillator in SED showed a divergence for the DPM to order i. We have shown that a 
correct evaluation of (4.7) and (4.9) lead to the convergent result (4.11). 

As concerns (v2
), we have 

(v2) <::::< (v~) + 2g(VOv1) + r( (vr> + 2 (VOV2) ). (4.12) 

It is easy to show that (vr> and (VoV2) are given by (4.7) and (4.9) if we introduce a factor oi in the integrals. The 
calculation of the integrals appearing in these expressions leads to 

J+OO dWoiIR(WWC\W)<::::<-I-( 1rSr(wo) )3[_3_+ 153 -~wo Sj(wo) +~(wo Sj(wo) )2 
- 00 w~ 1"wri lWw~ 256 128 Sr(wo) 64 Sr(wo) 

27 2 SJ(wo) 3 Sr(3Wo ] 
+--wo +----- , 

128 Sr(wo) 256 Sr(wo) 

It can be again checked that MAM leads to the same result. 
Finally, in order to obtain (E) for the quartic anhar

monic oscillator to second order in g, we need to evaluate 
(x4

) to first order ing, given by 

(4.15) Then, we get 

Using (2.13), we obtain 

(X~Xl) = - 36(x~)2f_+0000 dwR(w)C(w) 

(x4 ) <::::< ( 1rSr(wo) )2[3 + 1rgSr(wo) 
1"wri 1"W~ 

(4.13a) 

(4.13b) 

(4.13c) 

(4.13d) 

(4.14) 

(4.17b) 

(4.18 ) 

- 24f_+0000 dwR(w)~(w). 
The integrals in (4.16) are given by 

( 4.16) 
From (4.11), (4.14), and (4.18) it is verified thatthe DPM 
and MAM lead to the same result for (E) to second order in 
g given by (4.5). 

dwR(w)C(w)- 'f 0 1-~ r 0 , J 
+ 00 1rS (w ) [ S ' (w ) ] 

- 00 - 1"W~ 4 Sr(wo) 
(4.17a) 
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V. CONCLUSIONS 

In this paper we have compared two methods for solving 
for the motion of a charge in a random Gaussian electric 
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field, the direct perturbation method (DPM) and the Mar
kov approximation method (MAM). We have shown that if 
there are no high-frequency contributions, the two methods 
coincide to first order in the anharmonic coupling constant 
g. If high-frequency contributions exist, the DPM includes 
them whereas the MAM always eliminates them. The MAM 
is then not valid when frequencies w:>wo contribute, which 
happens for some divergent spectral densities. 

Explicit results have been obtained for the mean values 
of (x2

), (v2
) and the energy to first order in g. These results 

are valid for arbitrary anharmonic potentials, V, and for ran
dom fields without high-frequency contributions. 

We have also shown that the two methods give the same 
results to second order ing, for the quartic anharmonic oscil
lator. The agreement holds for any spectral density of the 
noise, such that there is no high-frequency contribution. It is 
reasonable to expect the same result for any perturbing po
tential. 

Finally, we have shown that agreement of the average 
energy in stochastic electrodynamics (spectral density pro
portional to ( 3

) with that of quantum mechanics, due to a 
precise cancellation of a term in the expression for (E ) that 
in general would be proportional to V /I , has its origin in the 
fact that the average action is /i/2 (to first order in the anhar
monic coupling constant). However, this agreement with 
quantum mechanics does not continue to second order. 2 

This result has been obtained using the MAM, but as we 
have shown the DPM leads to the same conclusion: no agree
ment is obtained with quantum mechanics to second order 
ing. 
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Using 

= 1T---J -1/2 f_+",,"" __ d_U- (_l)n-I d n- I I 
(u 2 +1)n (n-l)! dJn-1 ;'=1' 

(A4) 

we obtain 

12= (1T/2TW~ )[S(WO) - (woI4)S'(wO)]' (A5) 

For 13 , if S(w) is bounded by some power of W for all 
W > WO, i.e., if S(w) <NTWn, where N is a constant of order 1, 
then it is always possible to find 0 < k < 1 so that the integral 
over the interval (wo(1 + (TWO) 1/4)1/2, wo(1 + (TWo) -k)I/2) 

is ignorable. To see this, call it I ~ and make the variable 
changew =wo(1 + V)I/2. Then 
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APPENDIX: ANALYSIS OF HIGH-FREQUENCY 
CONTRIBUTIONS 

In this appendix we calculate the following integral: 

(Al) 

The calculation of I to first order in TWo can be done by 
dividing the interval of integration into three subintervals: 
J I == (O,wo(1 - (TWo) 1/4)1/2) for frequencies W <WO, which 
never contribute to order TWo; J2==(Wo(l- (TWo)I/4) 1/2, 
wo(1 + (TWo) 1/4)1/2), which gives the contribution corre
sponding to W=Wo; and J3 == (wo(1 + (TWO) 1/4)1/2,00 ), 
which only contributes for noise with a spectral density giv
ing high-frequency contributions. 

By making the substitution v = (w2 
- w~ )/w~, II' the 

integral corresponding to J I , has the form 

(A2) 

whereM = sUPJ, Sew) isoforderT. Thus II = O(TI /4 ),soit 
is ignorable, as was claimed. 

For 12, let us make the substitution TWoU = (w2 - w~)/ 
w~. Then 

(A3) 

s: Nw~ - 6/2 ( TWo) 1/4 - [k(n + 1)12]. (A6) 

Now call n the part that is left. We have 

n"", -i"" dw Sew) . 
CLIO ( 'TWo) - k 12 (JJ6 

(A7) 

Thus if S(w) <Nw4
+r for w:>wo, whereO<r< 1 andNis of 

order 1, n is ignorable. 
Therefore for this kind of spectral density without high

frequency contributions, I is given by (A5). 
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Coexistence of periodic points is investigated in area-preserving reversible dynamical systems 
on a plane which are not necessarily close to an integrable one. It is shown that on the 
symmetry axis a higher cycle implies a lower cycle and any cycle implies an infinite number of 
higher cycles. The standard map is investigated as an example. It is shown that k-cycles for any 
k>2 densely fill the phase plane ofthe map as the parameter goes to infinity. In addition, the 
number of these cycles are estimated. 

I. INTRODUCTION 

In one-dimensional dynamical systems on a line, a beau
tiful result is obtained by Sarkovskii I on the coexistence of 
cycles (or periodic points). Let nl and n2 be two natural 
numbers. If an existence of an n I-cycle implies the existence 
of an n2-cycle, then we write n I < n2• Sarkovskii's result is as 
follows. 

Theorem: 3<5<7<9< 11 < ... <3'2<5'2<7'2 
< ... <3'22 <5'22 < ... <23 <22 <2< 1. 

Sarkovskii obtained his result essentially by using the 
intermediate-value theorem. This suggests that a simple geo
metrical consideration in higher dimensions should be effec
tive to a certain extent. 

In the present paper, we consider the problem of the 
coexistence of cycles for two-dimensional area-preserving 
dynamical systems with reversibility which are not necessar
ily close to an integrable one. Corresponding to the interme
diate-value theorem for one-dimensional systems, we utilize 
the Jordan curve theorem. An advantage of considering re
versible systems2

•
3 is that these systems have a symmetry 

axis and that cycles of a certain type, which are called sym
metric cycles, have their points on the symmetry axis. In a 
sense, the problem of finding cycles reduces to one dimen
sion. Frequently, these symmetric cycles play an important 
role when investigating the global structure of the systems. It 
is to be noticed here that Mather4 has recently proved a 
theorem on the coexistence of periodic and quasiperiodic 
points in maps which satisfy the twist condition. His result 
heavily depends on the twist condition. Therefore his meth
od seems not applicable to our problem. 

In Sec. II, we state the problem and the results on the 
coexistence of cycles. We consider a surface map not neces
sarily defined for the whole plane R2. The domain of the 
surface map Tn shrinks as n increases. This situation is real
ized in the restricted three-body problem.5 Our results are 
expressed in the form of three theorems. Theorems 1 and 2 
are obtained essentially by the Jordan curve theorem. 
Theorem 3 utilizes the area-preserving property. As conse
quences, we shall show the coexistence of countably many 
cycles and uncountably many accumulation points of cycles. 

In Sec. III, we investigate the standard map as an exam-

aJ Permanent address: International Latitude Observatory, Mizusawa, 
Iwate 023, Japan. 

pIe of reversible systems. We shall show that k-cycles for any 
k>2 densely fill the phase plane as the parameter K goes to 
infinity. In addition, the number of cycles will be estimated. 
It turns out that the number oftwo-cycles increases in pro
portion to K 2 as K ...... 00 and that the number of k-cycles for 
k;;.3 increases at least in proportion to Kk/2 for an even k 
and in proportion to K (k + 1)12 for an odd k. 

II. STATEMENT OF THE PROBLEM AND THE RESULTS 

Let WI be a closed region in the plane R2 surrounded by 
a piecewise smooth Jordan curve. Let us consider a map T: 
Wi ...... R2. We assume that Tis (1) analytic in WI - aWl and 
homeomorphic in a WI' (2) area preserving, and (3 ) reversi
ble. 

Reversibility is expressed as follows. 3 Let R be the re
flection of points with respect to a symmetry axis of the 
plane. Then we have 

TnR=RT- n for n=O,± 1,±2, ... , (1) 

with 

R 2 =1. (2) 
The domains Wn + I of Tn + 1 are obtained by 

Wn+. =T-n(TnWnnW.) for n=I,2,.... (3) 

Let 
00 

Woo = n Wn and W= n Tnw",. (4) 
n=1 n=1 

Then Wis the invariant set under Tn for an arbitrary integer 
n. By reversibility we have 

TnWn = RWn for n = 1,2, .... (5) 

Let 

(6) 

Then W _ I is the domain of T - I. The domains W _ n _ 1 of 
T - n - 1 are obtained successively by 

W_ n_ 1 =Tn(T-nW_nnW_ I ) for n= 1,2, .... (7) 

Let 

(8) 

Then the invariant set W is given also by 
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00 

W= n T-nw_
oo

' (9) 
n=. 

With the aid of the equality TWn +. = Wn n TW. which is 
readily verified, we obtain simple relations between Wn and 
W -n as 

W _ n = TnWn for n = 1,2, ... , ( 10) 

which show in view of Eq. (5) that Wn and W _ n are sym
metric to each other with respect to the symmetry axis. 

In general, the sets Wn and hence Tn Wn and W _ n are 
composed of a finite number of connected components. 
However, we assume for simplicity of description that each 
Wn is composed of one arcwise connected component. This 
assumption corresponds to the fact that we consider only a 
component which contains Mn [see Eqs. (12) and (14)]. 
Following DeVogelaere,31et 

(11 ) 

and 

Mn = {PIP = MnP}, n = 0, ± 1, ± 2,.... (12) 

By definition, Mo is the symmetry axis. Let 

M n.m = Mn nMm for n=/=m. (13) 

M n•m is a set of symmetric cycles. In particular, M •. o is the 
set of symmetric one-cycles (fixed points). For more details 
on Mn and M n.m , see De Vogelaere. 3 It is easily seen that 

Mn eTnWn = W -n and M_ n e Wn for n = 1,2, .... 
(14) 

Ifn pointsp.,P2, ... ,Pn constitute an n-cycle, they are said 
to belong to this n-cycle. We denote intervals on the symme
try axis by (p,q), [p,q], etc. for brevity where P and q are 
points on the symmetry axis. 

Now let us state our main results. Proofs of the lemmas 
are given in the Appendix. 

Lemma 1: Let q.,q2EMo belong to a 2n-cycle. Then, the 
behavior of the symmetry axis around q. and q2 under the 
operation of Tn is one of the cases illustrated in Fig. 1 or 
those symmetric to them with respect to the symmetry axis. 

With the aid of Lemma 1 and the Jordan curve theorem, 
we can prove the following. 

Theorem 1: If q.,q2EMo belong to a 2n-cycle, and if 
(q.,q2) e Wn, then there is a fixed point of Tn in (q.,q2)' 

Proof: We assume that a fixed point of Tn does not exist 
and show that this leads to a contradiction. The interval 
(q.,q2) may contain other 2n-cycle points rj (i = 1,2, ... ,m). 
Without loss of generality, we can assume that there are no 
two points in rj which belong to a single 2n-cycle. Actually, if 
there exist these points, say rk and r l , then we only need to 
put q. = rk and q2 = rl , and start our discussion from the 
beginning. Thus we have (Q.,Q2)nT n(q.,q2) =0. The 
curve [Q.,q2] U T n[Q.,Q2] forms a Jordan curve, which we 
shall denote by C including its orientation. Here, we take the 
orientation of C as proceeding from Q. to Q2 on the symmetry 
axis. Let D be the interior of C. Let C' and D ' be the sets 
symmetric to C and D with respect to the symmetry axis. By 
reversibility, we have 

TnC' = C and TnD' =D. (15) 
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(1) 

( 2) 

----~----~---
~1- F. 

----~----~----

(3) ----¥----7""\----

(.) ----~----r!-----
(5) ____ ~----~----

FIG. 1. Images of the symmetry axis near an even cycle on it. Two points q, 
and q2 belong to a single 2n-cycle. A portion of the symmetry axis around q, 
(indicated by an arrow centered at q,) is mapped by Tn into the curve 
around q2' Also, a portion of the symmetry axis around q2 is mapped into 
the curve around q ,. 

Let Tnrk (1.o;;k.o;;m) in {Tnr j } be the nearest point on 
the symmetry axis to Q. from the left, and let y = (T nr k,Q.). 
Since yn C = 0, we have by the Jordan curve theorem 

yeD or ynD = 0. (16) 

On the other hand, since y is an interval on the symmetry 
axis, we have 

ye~yeD " ynD = {O¢:}ynD' = 0. (17) 

Now, let us follow the behavior of y under Tn for each 
case in Fig. 1. The methods are almost identical, so we de
scribe the first case and omit the remaining cases. Here D is 
either on the right orleft ofC (see, e.g., Kodaira6

). If Dis on 
the right of C, then we have yeD and TnynD = 0. This 
contradicts Eqs. (15) and (17). If D is on the left of C, then 
we have TnyeD and ynD = 0. This also contradicts Eqs. 
(15) and (17). Thus a contradiction is derived assuming 
nonexistence of a fixed point of Tn. Q.E.D. 

Lemma 2: Take a PETnWn such that p=/=MnP. Then 
there exists a point ofMn on an arbitrary arc in TnWn con
nectingp and Mnp. 

Lemma 3: Mn is locally an analytical arc in Tn Wn . 
For the proof of Lemma 3, see Finn.7 Using Lemmas 2 

and 3, we can prove the following two lemmas. 
Lemma 4: Mn divides TnWn into two. 
Lemma 5: Mn is a single arc. 
From Lemmas 4 and 5, we obtain the following. 
Theorem 2: Mn is an arc dividing TnWn into two. 
We obtain the following theorem by the area-preserving 

property of the map. 
Theorem 3: If Q.,Q2EMon Wbelong to different cycles 
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and if (ql,q2) C W, then there exists a QE(ql,q2) such that Q 

belongs to a higher cycle than do Q I and Q2' 

Proof: Let m and n be arbitrary positive integers and 
k = [m,n] the least common multiple. Let QI,q2EMon Wbe
long to n- and m-cycles, respectively. Without loss of genera
lity, we can regard that there is no cycle lower than n or m in 
(QI,Q2)' For, if there exists such a pointq, then it is enough to 
put q I = Q. Denote the interval (Q I,Q2) by y. By our assump
tion just above, yand T ky have no common points, yU T~ 
forms a Jordan curve. Let us denote the interior of yU Tky 
by D and the area of D by m(D). Let us consider the se
quence TjkD(j = 0,1,2, ... ). It is evident that one of 
D,TkD, T 2kD, ... , T1kD(l = m( w)/2(m(D») + 1) has com
mon points with the symmetry axis, i.e., one of 
T ky,T 2ky, ... ,Tu+ I)ky intersects the symmetry axis. This 
means that y contains a cycle. Q.E.D. 

From the above theorems, we obtain several conse
quences. For simplicity, we restrict ourselves to the interior 
of the invariant set W. 

Corollary 1: An odd cycle on Mo implies a fixed point. 
Proof: The method of proof is similar for any odd cycle, 

so we consider a three-cycle. Let PI' P2' and P3 constitute a 
three-cycle. Suppose PI = Tp3 T2p2 = T3pI and pleMO' 

Then, PI = Tp3 = TRp2 = M 11'2' that is, there is a point 
peM I on an arbitrary arc connectingp I and P2 by Lemma 2. 
On the other hand, P3 = Tp2 = TRp3 = M 11'3' i.e., P3EMI' 
Therefore MlnMO = M l.O #0. In fact,P2 andp3 are at the 
opposite sides with respect to Mo and P can be chosen to be 
on the same side withp2' hence M I, which is an arc passing 
throughp andp3' intersects Mo. Q.E.D. 

Directly from Theorem 1 and Corollary 1, we obtain the 
following. 

Corollary 2: An n-cycle implies a fixed point for n > 1. 
The following results are evident from Theorem 3. 

Corollary 3: There exist denumerably many cycles 
between two arbitrary cycles on Mo. 

Corollary 4: There exist uncountably many accumula
tion points of cycles between two arbitrary cycles on Mo. 

Similar results hold on M I, the complementary symme
try curve. In the case where the surface itself is compact and 
T can be operated arbitrarily many times on this surface, the 
above results hold on the whole surface. 

III. AN EXAMPLE: THE STANDARD MAP AS K - 00 

Let us consider the standard map as an example. In par
ticular, we consider the problem of the coexistence of cycles 
as the parameter K goes to infinity. Our main purpose is to 
prove the following two theorems. 

Theorem 4: For any integer k > I, k-cycles densely fill 
the phase plane of the standard map as K ..... 00. 

Theorem 5: The number of two-cycles increases in pro
portion to K 2 as K ..... 00. For k> 2, the number of k-cycles 
increases at least in proportion to K k/2 if k is even and in 
proportion to K (k + I )/2 if k is odd as K ..... 00. 

We shall discuss in detail the case of two-cycles in Sec. 
III A. Section III B deals with the case of k-cycles for k > 2. 

The standard map has been extensively investigated.8
-

1O 

The map is given by 
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T: Xn+1 =xn +h" (mod I), 

On + I = On + X" + I (mod 1), 
(18) 

where 

h" = h(O,,) = - (K 1217') sin 217' On' (19) 

The phase plane of the map is a torus. We take the square 
!<x<!, !<O<! as the fundamental domain of Twhere 

opposite sides must be identified. The standard map is rever
sible. 11,12 The main symmetry axes (or the set Mo of Sec. II) 

are the x axis and the lines 0 = ±!, while the complemen
tary axes (or the set M I of Sec. II) are the lines x = 20 and 
x + 1 = 20. As is easily confirmed, the 0 axis and the lines 
x = ±! have a similar property to that of the symmetry 
axes, that is, if their iterates intersect themselves, then the 
points of intersection are cycles. 

A. Two-cycles 

Let three points (Xl,OI)' (X2,02)' (X3,03) be related by 
(X3,03) = T(X2,02) = T 2(x},OI)' We obtain from Eq. (18) 

X3 =xI + hi + h2, 03 = 01 + hi + h2 +XI +x2· 

In order that these three points constitute a two-cycle, it is 
necessary and sufficient that they satisfy 

hi +h2=m and XI +x2=n, 

for some integers m and n. With the aid of Eq. (18), these 
conditions are rewritten as 

and 

O2 = 01 + h(O) )/2 + n/2, 

Xl = - h(OI)/2 + n/2, 

X2 = h(OI)/2 + n/2, 

with integers m and n. 

(20) 

(21) 

First, consider the case m = n = O. Equation (20) re
duces to 

201 + I (K 1417') sin 21T81, (22) 

where 1 is an integer. Clearly, two-cycles of this type are on 
the complementary symmetry axes X = 20 and x + 1 = 20. 
If the value of K is increased, two new two-cycles are born 
every time the graph fl (0) = (K 1417' ) sin 217'0 crosses the 
graph f2 (0) = 20 + 1. The value of K at which new two
cycles are born is given approximately by 
K = 41T{1 +!> - 4/17'(1 +!> when K is sufficiently large. 
Therefore the number of two-cycles increases in proportion 
to K. Two-cycles densely fill the complementary axes as 
K ..... 00 • In fact, for any e > 0, and a large N > 0, the slope (K I 
2)cos 217'0 offl (0) (O<O<!> becomes larger than N except 
for 1- e<O<1 + e if we take K sufficiently large. For this 
value of K, we can find at least one two-cycle in any interval 
of length 8-::::; lI(N - 2) contained in 0<0<1- e or 
1 + e<O<!. 

Next, consider the case m = 0, n#O. It is easily seen 
that the case of an even n reduces to the case n = 0 and the 
case of an odd n reduces to the case n = 1. Therefore it suf
fices to consider the case n = 1. In this case, Eq. (20) be
comes 
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(K 1417") sin 21TOI = I, (23) 

where I is an integer. Clearly, two-cycles are on the line x = ! 
(or x = -!). The situation is similar to that in the preced
ing paragraph. Two new two-cycles are born each time when 
the value of K passes through 417"1(l = 1,2,' "). Thus the 
number of two-cycles increases in proportion to K. Two
cycles densely fill the line x = ± ~ as K - 00 • 

Finally, consider the case m :;60. The case of an even n 
reduces to the case n = 0 and the case of an odd n reduces to 
the case n = 1. Therefore it suffices to consider the cases 
n = 0 and n = 1. Let us consider the case n = 0 in detail. 
Equation (20) becomes 

(K 121T) sin 21TOI 
+ (K 121T) sin 21T(01 - (K 141T) sin 21TOI) = m, (24) 

where m is an integer. Two-cycles of this type are on the 
curve x = (K 1417") sin 21TO and their iterates on the curve 
X= - (KI41T)sin21TObecauseofEq. (21). 

Let us estimate the number of two-cycles of this type. 
Let 

11(0) = (K 121T) sin 21TO, 

11(0) = (K 121T) sin 21Tg(0) , 

where 

gee) = ° - (K 1417") sin 21TO. 

(25) 

(26) 

For a large K> 0, the graph g(O) has one negative peak of 
amplitude nearly equal to K 1417" at O:::::i for 0<0<1 There
fore/l(O) oscillatesapproximately2[K 1417"] times with am
plitudeK 121T, where [ ] is the Gauss notation. The graph of 
11+11 oscillates 2[K 1417"] times with amplitudeK 121T, the 
centers of oscillations being on II' In each oscillation of am-

o 
C\I 

o 

LD 

o 

o 
~ 

1 0. ° 0 '.1 

I 
1 

v 

.1 .1 
0.2 e O.3 0.4 0.5 

FIG. 2. The graph of f.(f}) +h(fJ) = (K/211')sin211'B + (KI 
211') sin 2111B - (K 1411') sin 211'B)withK /211' = 10. Two-cyc1esareobtained 
as points of intersection off = f. + h withf an integer. 
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plitude K 121T. the graph/l + h. crosses the graphl = integer 
4[K 1417"] times. Consequently, II +11 intersects/= integer 
8[K 1417"]2 times forO<O<! (see Fig. 2). As is easily verified, 
each point of intersection uniquely corresponds to a two
cycle. Thus the number of two-cycles increases in proportion 
toKl. 

Now. two-cycles obtained from Eq. (24) with 
m = ± 1, ± 2 .... densely fillthe phase plane asK - 00. First. 
observe that these cycles densely fill the curve x = (K 1 
41T) sin 21TO as K - 00 • In fact, two neighboring peaks oflz. in 
which there are 2 [K 121T] cycles. become arbitrarily close to 
each other everywhere in - !<O<! as K - 00 since the slope 
of g( 0) becomes arbitrarily large except at ° = ± i. On the 
other hand, the curve x = (K 141T) sin 21TO densely fills the 
phase plane as K - 00 since the slope of this curve becomes 
arbitrarily large except at ° = ± i. and hence the distance 
between two neighboring branches of the curve in the funda
mental domain - !<x<!. - !<O<! becomes arbitrarily. 
small. 

In the case n = 1. Eq. (20) becomes 

(K /21T)sin 21TOI 
- (K 121T) sin 21T(01 - (K 141T) sin 21TOI) = m. 

A similar discussion applies to this case. We obtain two
cycles different from those in the previous case. These cycles 
are on the curve x = (K 1417") sin 21TO +!. 

B. k-cycles (k> 2) 

Let us extend our discussion to the case of k-cycles for 
any k> 2. We consider a particular type of k-cycles which 
have at least one of their points on the ° axis. The conditions 
for a k-cycle are from Eq. (18) 

hi + hl + ... + hk = m. XI + Xl + ... + Xk = n, 
(27) 

with m and n integers. Let (XhO I ), (Xl ,02), ... ,(Xk,Ok) con
stitute a k-cycle and let X 2 = 0 for convenience. Then we 
obtain 

(28) 

and 

j-I 
O2 = OI,Oj = OJ_I + I h(Oi)' j = 3,4, ... ,k. (29) 

i=2 

The conditions (27) for a k-cycle can be simplified with 
the aid of its property similar to symmetric periodic points. 
In fact, we have 0k_i+1 =02+i,Xk_i+1 +X3+i 
= 0, i = 1,2, ... ,k/2 - 1, and X3 +x I = 0, Xk/2+2 = 0 
(mod 1), for an even k, and 0k_i+1 =02+i,Xk_ i+ 1 

+X3+ i = 0, i= 1,2, ... , (k - 3)/2, and X3 +xI = 0 
(mod 1), for an odd k. Owing to these relations. the second 
equation ofEq. (27) is automatically satisfied. In addition, if 
we let 

Pk (01 ) = h(OI) + h(02) + ... + h(Ok)' 

we obtain recursion formulas for Pj as 
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P2 «(}) = 2h«(}), 

Pj «(}) =2Pj _d(}) -Pj - 2 «(}) for an evenj> 4, (31) 

~«(}) = ~_I «(}) + h (() + U~/2 P2i «(})12) 

for an oddj>3. 

Here k-cycles are obtained as the points of intersection of the 
graphs P = Pk «(}) and P = integer. Denote the number of 
these intersection points by I k • 

Now, let us estimate the number Nk of k-cycles for a 
large K > O. It should be noted that Nk is not less than Ik /2. 
In fact, the point (X)o(}I) is on the curve given byEq. (28) for 
- ! <(}<!. Even cycles have two points on this curve and odd 

cycles have one point on it. Hence Nk >Ik/2. From now on, 
we consider the region O<()<! as in the previous subsection. 
First, consider three-cycles. Here P3 «(}) is written fully as 

- P3 «(}) = (K hr)sin 21T() 

+ (K /21T) sin 21T{() - (K /21T) sin 21T(}). 

The function - P3 «(}) is essentially of the same form with 
the left-hand members ofEq. (24), and it oscillates 2 [K /21T] 
times. In addition, individual oscillations have the ampli
tude K /21T with their centers of oscillation on the curve 
P = (K /1T)sin 21T(). We obtain an estimate 13z8[K /21T] 2. 

Thus N3 is proportional to [K /21T] 2, and N4 is also propor
tional to [K /21T] 2. 

Next, consider five-cycles. We have 

o r------------------i 
rr I ' 
I I 

o 

~ +--,---- I T-----T-~ 
~ 0 r' O"'-b _~0~.~1 ___ Q __ • 2 __ .Q~. 5 

~ ~ft .J). .M.I 
I 

.... 
Il. 
I 

o 

o 
~ 

I 

o 

o 

o 
~ 

I 0 .. 0 0.1 0.2 0.3 
81 

c~~_0,.5 

FIG. 3. The graph of - Pk (8) for k = 3, 5, and 7 with K /217' = 2. The k
cycles are obtained as points of intersection of/= Pk (8) with/an integer. 
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Ps«(}) = P4 «(}) - (K /21T) 

X sin 21T{(} + P2«(})/2 + P4 «(})/2). 

One oscillation of P4 «(})/2 with amplitude K /21T corre
sponds to 4 [K /21T] oscillations of sin 21T{P4 ( ()) /2). Since the 
numbers of oscillations of P4 «(})/2 and () + P2 «(})/ 
2 + P4 «(})/2 are approximately equal in O<(}<! for a large 
K>O, Ps«(}) has approximately 8[K /21T] 2 oscillations of 
amplitudeK /21Twith their centers of oscillation on the curve 
P= P4 «(}). The number Ns is proportional to [K /21TV 

The argument in the preceding paragraph can be repeat
ed for Pk «(}), k>6. We obtain the result as stated in 
Theorem 5. The graphs of P3 , P4 , and P5 are plotted for a 
moderate value of K in Fig. 3. 

Now, it is evident that k-cycles for k> 2 densely fill the 
phase plane as K --+ 00. In fact, the argument is identical for 
three-cycles with that in Sec. III A. From the construction, 
it is clear that k-cycles for k> 3 are more numerous than 
three-cycles, hence the assertion follows. 
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APPENDIX: PROOFS OF LEMMAS 

Proof of Lemma 1: Take local rectangular coordinate 
systems (x,y) and (x',y') around ql and q2' respectively, 
where x and x' axes are along the symmetry axis. Let A I and 
A2 be the linearizations of Tn around ql and q2' and let 

AI = [: !]. (AI) 

By reversibility, we have RA2RA I = I, i.e., 

(A2) 

Let (x,O) and (x',O) be points in the small neighborhood of 
q I and q2 on the symmetry axis. Let (xi,yi ) and (x l,y I) be 
their images under AI andA 2• We have 

xi = ax, XI = dx', Yi = ex, YI = ex'. (A3) 

Ife#O, thenYi = (e/a)xi andy, = (e/d)x" which mean 
transversal crossings of the images of the symmetry axis (see 
the first figure of Fig. 1). The direction of crossings is deter
mined by the sign of e. 

If e = 0, the images of the symmetry axis are tangent to 
the symmetry axis. To get more information at the tangency, 
let us return to Tn and take nonlinear terms into account . 
Let us expand Tn as power series in local coordinates around 
q I and q2 up to and including the k th order terms in x and y. 
We have 

k 

xi =ax+by+ l:e;x;+yF,(x,y), 
;=2 

k (A4) 
Yi = dy + l:hx; + yG I (x,y), 

;=2 
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around q I and 
k 

XI = ax' + by' + IgiX'i + y'F2(x',y'), 
i=2 

k 

YI = dy' + I hix'i + y'G2(x',y'), 
;=2 

(AS) 

around q2' where F I, G I, F2, and G2 are functions of degree 1 
to k - 1 with respect to their arguments. Here, it is to be 
understood that points (x,y) and (x I'YI) are in the neighbor
hood of ql' and points (x' ,y') and (xi,yi ) are in the neigh
borhood of q2' 

Now, take a pointpo(x,O) on the symmetry axisnearql' 
Then we have the image point PI (xi ,Yi) under T" as 

k 

xi =ax + Ieixi, 
i=2 

k 

Yi = I/;x
i
• (A6) 

i=2 

By reversibility, we have Rpo = T"RpI' i.e., (x,O) 
= T"(xi, - Yi) or by Eq. (AS) 

x = d (ax + it2eixi) + b ( - it;;X) 

k ( k )i k + .Igi ax + .~ejxi - .~/;xiF3(X), 
1=2 )-2 1-2 

(A7) 

0= a( - it;;Xi) + it2h{ax + jt2ejxi} - it;;X
i
G3(X), 

where F3 and G3 are functions of degree 1 or greater with 
respect tox. From Eq. (A7), we obtain 

(A8) 

if /; = 0 (hence hi = 0) for i = 2, ... ,m. When /; = 0 for 
i = 2, ... ,m, the transformation of yin Eqs. (A4) and (AS) 

reduces to 

Yi = dy + am -Ihmxm + yF4(x,y) , 

YI = ay' + hmx'm + y'G4(x',y'), 
(A9) 

where F4 and G4 are functions of x and y of degree 1 or 
greater. In particular, if we transform the points (x,O) and 
(x',O) on the symmetry axis near ql and q2' we obtain 

x; = ax + "', Yi = amhmxm + "', 
XI =dx' + "', YI =hmx'm + "', 

(AlO) 

from which we obtain the assertion of Lemma 1. Q.E.D. 
Proof of Lemma 2: The proof is analogous to that of 

Theorem 1. First, consider the case pET"W" - a( T"W,,), 
henceM"pET"W" - a(T"W,,). Let r be an arbitrary open 
arc in T" W" connectingp and M"p. We can choose an E> 0 
such that UE(p)nM" =0 and UE(M"p)nM" =0. Our 
assertion is not affected by deforming r in UE (p) and 
UE (M"p). Let us deform r such that r becomes parallel to 
the symmetry axis in the E/2 neighborhoods of p and M"p, 
but remains unchanged outside UE(p) and UE(M"p). 
Further, let us extend r beyond p and M"p parallel to the 
symmetry axis in both the E/2 neighborhoods. In particular, 
let us denote by rl and r2 the two partial arcs in extended 
arcs contained in Ud2 (p) and UE/2 (M"p). 

Now, we shall show that the images of rl and r2 under 
M" behave as illustrated in Fig. 1. Take a point qET" Wn . Let 
the coordinates of eight points p, q, M"p, M"q, RM"p, 
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RMnq, Rp, and Rq be .(Xl,yl), (xi ,Yi), (X2,y2) , (xi,yi), 
(X3,y3)' (xi,yi), (X4,y4)' and (x~,y~) in the global coordi
nate system where the x axis is along the symmetry axis. By 
reversibility, we have 

(A11) 

YI= -Y4' Yi = -y~, Y2= -Y3' Yi = -Yi· 

Consider a local coordinate system whose axes are parallel to 
the global ones and whose origin is at p. Let (xi' ,y;') be the 
coordinates of q in this system. Similarly, consider local co
ordinate systems with origins, respectively, at MnP, RMnP, 
and Rp, and let (xi' ,yi'), (Xl ,y3), and (x4' ,y4') be the coordi
nates of Mnq, RMnq, and Rq in the corresponding systems. 
Then, we have 

(A12) 
Yi'= -Y4', Yi'= -Y3' 

Let R * be the reflection with respect to each local x axis. 
Equation (A12) shows that a formal reversibility 
T"R * = R *T -" holds in the local coordinate systems. 
From this property, it is easily seen that the situations illus
trated in Fig. 1 are realized. 

Let us assume r n Mn = 0 and show that this leads to a 
contradiction. We must examine each case in Fig. 1. We 
describe, however, only the first case for brevity. Without 
loss of generality, we can assume that rEr implies M" 1'Eir. In 
fact, suppose that there exists an rEr for which M"rEr. In 
this case, we need only to let p = r and start our discussion 
from the beginning. Therefore rnM"r = 0, and fUM"f 
forms a Jordan curve. In addition, fUM" f is invariant un
der M". Hence the region surrounded by fUM" f is also 
invariant under M". Let r = rl - f. Then the arc r or its 
partial arc plays a similar role as r does in the proof of 
Theorem 1 and a contradiction is also derived. 

If pEa(T"W,,), take UE(p) and UE(M"p) such that 
UE(p) nM" = o and UE(M"p) nM" = 0. Ifwetakeasuf
ficiently small 8 <E, then M"qEUE(M"p) for any qEUlj (p). 
Let r be an arc connecting p and M"p. Let us extend r 
beyond both ends until it reaches q and M"q in Ulj (p) and 
UE (M"p). To prove our assertion, we only need to repeat the 
preceding argument with this extended r. Q.E.D. 

Proof of Lemma 4: Put D = T" W" - M". If p,qElJ can 
be connected by an arc in D, we express it as p =q. The rela
tion=is evidently an equivalent relation. Let us denote by 
[p) the equivalence class to which pElJ belongs. Take a pElJ. 
Then it is easily shown with the aid of Lemma 2 that 
[p) =1= [M"p]. Thus D consists of at least two arcwise con
nected components. We shall show in the following that D 
consists of at most two arcwise connected components, 
which proves our assertion. 

Tobeginwith,M,,[P) = [M"p] andM"[M,,p] = [Pl. 
In fact, take a qE [P) and let reD be an arc connectingp and 
q. We haveM"re [M"p] , sinceM"r is arcwise connected. 
HenceMnqE[M"p], whichmeansMn [P) e [MnP]. Weob
tain [M nP] eM" [P) in a similar manner. The second equa
lity is obtained similarly. 

Next, we shall show that [P) is open in T"W". Take a 
qE [p ). We have q =1= M" q by definition. If we take a sufficien t
ly small E> 0, we have UE (q) nM" = 0by the continuity of 
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Mn where UE(q) is the E neighborhood ofq in Tnwn. There
fore UE (q) CD. Any reUE (q) can be arcwise connected to q 
in D, which in turn means that r can be arcwise connected to 
P inDo Hence UE(q) C [P), i.e., [P) is open in Tnwn· 

Next, we shall show that [P) - [P) = -;-"[ M=-=n-P-=-] 

- [MnP] CMn. TakeaqE [p) - [P). IfqEIMn , thenqE[q). 
However, this contradicts that [q) is open in Tn Wn. There
fore qEMn. Take an arbitrary sequence {q;} C [P) which 
converges toq. We have Mnq;E[MnP] andMnq;--+Mnq = q 

as i--+oo, which means qE [MnP] - [MnP]. Hence [P) 

- [P) C [MnP] - [MnP]· Then [MnP] - [MnP] 
C [p) - [p) can be shown similarly. 

According to Lemma 3, Tn Wn is always locally divided 
into two by Mn . In other words, if we take a small E > 0, then 

the E neighborhood UE (q) of qE [P) - [P) in Tn Wn consists 

of points of [p], [MnP], and [P) - [p], i.e., UE (q) 

C [p)U fMnpl. 
Assume that there exists a qED such that 

qEl[p)U[MnP],hence [q)#[P) and [q)#[MnP]' Thenq 
can be arcwise connected top by an arc yin Tn Wn . Consider 
an open subarc y, of Y in which one of the ends is q and the 
other tEy. If t is sufficiently close to P, we have y, n [p) #0. 
On the other hand, if t is sufficiently close to q, we have 
y, n [P) = y, n [ MnP] = 0. Therefore there exists a point 
SEY such that Ys n [p) = Ys n [MnP] #0 and y, n [P) #0 
or y, n [ MnP] #0 for any t which is closer to P along y than 
sis. Evidently,sE [P) - [p). Consider UE(s) in TnWn for 
any E> O. It contains a point tEY which is closer to q along y 

than S is and tEl [P) U [MnP]. This contradicts the property 
stated in the preceding paragraph. Therefore there does not 
exist a qED such that qEl[p) U [MnP]. Q.E.D. 

Proof of Lemma 5: It is easily seen by Lemma 2 that 
there are just two points of Mn on J = J( TnMn ). Let us 
denote them by m l and m 2 • We shall show that Mn is an arc 
connecting m I and m2, which proves the lemma. We use the 
following proposition. 

Proposition: Mn is a single arc in each neighborhood 
UOo (m I) and UOo (m2) for a sufficiently small 80 > O. 

Proof: The proof is identical for m I and m2, so we con
sider the case for m I' Let us consider a family of circles with 
center at m l and denote each ofthe circles by Ca where a is 
the radius. Let C a+ = Can Tn Wn. Since J is a piecewise 
smooth Jordan curve, there is a 8> 0 such that C: is a single 
arc for a<,8. Let us fix such a 8. It is easily seen that we have 
at least one point of Mn on each C a+ for 0 < a<,8. Let us 
denote by P a and p~ the two end points of C a+ . We can find 
an E=E(a»O such that (UE(Pa)UUE(p~»)nMn =0 
since Pa,p~El:Mn' Consequently, if we let Ya 
=C a+ -UE(Pa)-UE(P~)' we have YanMn=C a+ 
nMn • Let 

Dk = {pEYa l8Ik>a>8I(k + l)}, k = 1,2, .... 

Take a point qEMn nDk • Then, Mn is a single arc in a suffi
ciently small neighborhood of q by Lemma 3, and 
Dk C (TnWn );isclosed, so we can find anEk >Onotdepend
ing on the position in D k such that Mn is a single arc in the E k 

neighborhood UEk (p) of any pEDk nMn • Let us divide our 
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plane by an infinite number of squares with sides equal to 
Ek12. Take Ek neighborhoods at each vertex. Then Dk is 
covered by a finite number of these neighborhoods. 

Now, take apIEYo nMn and let r l be the arc ofMn in 
U

E
, (PI)' Then we haved(r l,m l)<,8. With a suitable choice 

of PI' we can make d(rl,m l) <8. This can be easily shown, 
so we omit the proof. The arc r I can be extended in D I, and 
gets out of DI through either Yo or Yo/2 eventually. In fact, if 
it can be extended endlessly in D I, it passes through some of 
the E I neighborhoods more than once. Let pi be the intersec
tion point of r I with Yo if it gets out of D I through Yo' and let 
P2 denote the intersection point of r I with Y 0!2 if it gets out of 
DI through Y0!2' We extend r I farther if it gets out of DI 
through Y0!2 until it necessarily gets out of DI UD2• It gets 
out of DI nD2 through either Yo or Yo/3' Let pi denote the 
intersection point of r I with Yo in the former case, and P3 
denote the intersection point of r I with Y 0/3 in the latter 
case. 

If we continue the above process, we obtain either an 
infinite sequence PI ,P2"'" or a finite sequence PI ,P2"" 'Pjo with 
somejo. Then r I reaches m I in the former case. Consider the 
latter case. In this case, r l starting from PI gets out of 
U%,;: : Dk through yo. Let pi be the intersection point of r I 
with Yo' We haved(rl,m l) = 8Ijo in the Eneighborhood of 
Pjo' As in the case of PI' we can take another point 
pl.,EMn nYo/j" such that the arc r 2 ofMn throughpl., goes 
into Dj". Let us extend r 2' If r 2 intersects Y 6IUo + i) for 
i = 1,2, ... , let Pjo +; denote its intersection points. If Pjo +; is 
defined for all t> 1, then r 2 reaches m I' Suppose there exists 
an io such that Pjo +; exist only for 1 <,i <,io. Then r 2 cannot 
stay in Ujk ~ ~o- I Dk indefinitely but it gets outtherethrough 
Yo. Let p~ denote its intersection point with yo. 

We repeat the above process. Suppose that r I,r 2,· .. ,r ko 
do not reach mI' Then we have pI = PI,pL ... ,p~o+ Ion Yo' 
These p~ all belong to Mn and locally to different arcs ofMn . 
Thus ko must be finite, since otherwise more than one arc of 
Mn enter into one of the EI neighborhoods which cover Yo' 
Therefore r; starting from Yo/; for some i reaches mI' 

It is easy to show that the number of arcs ofMn starting 
from m I is 1, so we omit the proof. Let us denote the arc by r, 
where r gets out of UM (m I) once and it can be extended 
outside Uo/;(m l ) and may reenter Uo/;(m l ). However, 
clearly it cannot approach infinitely close to m I' In other 
words, there exists a 8* > 0 such that Mn is a single arc in 
Uo• (m l )· 

We obtain a similar neighborhood Uo •• (m 2 ) for the 
case of m 2• Let 80 = min{8*,8**}, then our assertion is 
proved. Q.E.D. 

Now, return to the proof of Lemma 5. Take a positive 
Eo < 80 and let 

G = {Pld(p,q) <Eo, PETnwn, qEJ} 

- Uo,,(m l ) - UO,,(m2 ), 

D = TnWn - G - Uo" (m l ) - Uo" (m 2 ). 

For a sufficiently small Eo, we can make GnMn = 0. There
fore r getting out of Uo" (m I) enters D. By a similar reason
ing as in the proof of the proposition, r necessarily gets out 
ofD. It cannot reenter UOo (m l), so it enters UOo (m2). On the 
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other hand, an arc ofMn which can enter U/)o (m 2 ) is the one 
which reaches m 2• Thus r starting from m) reaches m2' 
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The quantum mass corrections to static periodic solitons are considered and expressed in terms 
of a functional quantity, the discriminant of the Hill's operator appearing. Several general 
expansions for this and hence the mass corrections are given. In particular, the connection with 
integrable systems and inverse scattering is clearly seen; this enables one to obtain simple 
expressions for these corrections. 

I. INTRODUCTION 

A frequent question arising in field theories is the effect 
of quantization in the presence of a background field. Recur
ring background fields that have attracted much attention 
over the last decade are those which correspond classically 
to homotopically nontrivial configurations. These include 
"kink" -type solutions as well as the more restrictive class of 
soliton solutions. Calculating the quantum corrections to 
these background fields usually proceeds via the semiclassi
cal approximation. 1.2 In the process of evaluating these cor
rections for two-dimensional soliton supporting theories a 
remarkable observation was made: the semiclassical approx
imation is in fact exact. I Indeed very elegant closed expres
sions could be found for the mass corrections of static soli
tons. 3 This led to several fruitful connections being 
established between completely integrable systems, inverse 
scattering, and field theory. The chiral u model, which pos
sesses both an infinite number of (nonlocal) conserved 
quantities that survive quantization and an infinite-dimen
sional loop algebra of symmetry transformation acting on 
the solution space of these models, has received much inves
tigation along such lines.4 

In the present paper we are going to evaluate the semi
classical corrections to static two-dimensional solitons, 
which are periodic in the spatial dimension. This analysis 
has the merit of enabling us to isolate and examine several of 
the connections with inverse scattering and integrable sys
tems. Much of the analysis carries through to the nonstatic 
situation. By letting the period tend to infinity we obtain the 
usual soliton results. Further the setting has some physical 
interest of its owns in that the R X S I topology has a phase 
structure for the twisted field solitons. (We shall not discuss 
this latter aspect here, nor the connection with field theory at 
finite temperature obtained by inverting the roles of space 
and time.) The nub of the problem in evaluating the quan
tum corrections lies in finding tractable expressions for a 
certain functional determinant. Before outlining what the 
difficulties are we must begin by describing the functional 
determinant and its regularization. 

The evaluation of one loop quantum corrections reduces 
to the study of a functional determinant, or a related zeta 
function.6--8 Following Faddeev9 the quantum mass correc
tion 8M for a time independent classical field ¢Jel (A) in a 
potential U[ ¢J] may be expressed in the following manner: 

8M=..!..tr'($ -,fK;,) --I-fdX[U H[¢Jed 
2 8~ 

-U"[¢Jvacllf (k2:~2)1/2 (ta) 

= -ltr'[($ -Ko)2KO-1I2] <0, (tb) 

d
2 

" Ko = - dX2 + U [¢Jvac]' (2a) 

d 2 " _ 
K= - dX2 + U [¢Jel] =Ko+ U, 

U= UH[¢Jed - U"[¢Jvae]' a = f dx U. (2b) 

Here and throughout tr' denotes the trace over the eigen
functions orthogonal to the zero modes, these being taken 
care of in the standard fashion. The first term in (la) con
tains the vacuum subtraction removing the quadratic diver
gences from 8M. The second term corresponds to the mass 
counterterm removing the logarithmic divergences. As this 
latter term depends only on the short distance behavior it has 
the same form fortheR XRandR xS 1 topology. Equations 
(ta) and (1b) are finite, though due care must betaken with 
the noncommutativity of K, Ko (Ref. 6). 

It is convenient to consider the following regularization 
ofEqs. (1a) and (1b): 

M(s) = -~tr'[s(a/L)Ko-l+s- (KS-K~)]. (3) 

Then 8M = M(!). [The factor L -I appears when changing 
the integral in (1a) into a sum.] Equation (3) is readily seen 
to agree with (1a) and (1 b) up to terms of order s - !, and 
by using (3) we are led to investigate the following zeta func
tions: 

(4) 

The operators K and Ko that appear throughout are 
Hill's operators; that is, considered as operators on R, they 
have periodic potentials arising from the spatial periodicity. 
Such operators appear naturally when considering quantum 
mechanics on a lattice and they have been well studied. 10,1 I 

The zeta functions (4) for Hill's operators have been investi
gatedl2

,13 for s integral, where they are finite, We, however, 
are interested in the behavior as s ..... ~ (with the renormaliz
ing terms indicated above). By studying these we shall de-
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rive expressions for the mass corrections. 
In Sec. II of this paper we introduce the discriminant 

!::J. (A) of a Hill's operator. This function provides a suitable 
resolvent for the zeta functions (4) and we establish a gen
eral expression for the mass correction M(s) [Eq. (3)] in 
terms of it. The problem is then reduced to finding expan
sions for the discriminant. We end this section by giving a 
general expansion for M(s) in terms of the Fourier coeffi
cients of the potential U. For all but the simplest potentials 
this rapidly becomes intractable and so in Sec. III we use a 
different approach. This revolves around the fact that a re
solvent can be constructed from a subset of the associated 
Hill's equation'S periodic eigenvalues. We express the mass 
correction then in terms of this subset. Of course, for a gen
eral potential this subset need neither be finite nor proper, 
yet for the potentials that arise the subset is both finite and 
known. This section leads us into several connections with 
integrable systems. It is perhaps worth bearing in mind that, 
for both the sine-Gordon and tjJ4 theories, the Hill's opera
tors that appear are the periodic analog of reftectionless po
tentials; they are in fact the n = 1 and n = 2 forms of Lame's 
equation (32), which is mentioned later. We conclude Sec. 
III by rederiving the usual R 2 soliton (kink) mass correc
tions from this subset of periodic eigenvalues. 

II. THE ZETA FUNCTION OF HILL'S EQUATION 

The purpose of this section is to derive several general 
expressions for the quantum mass corrections (1). These 
will be in terms of the discriminant of the Hill's operator, and 
we begin by first recalling some general properties of Hill's 
equation and its discriminant. 10-15 

Let Q be the Hill's operator 

d 2 

Q= - dz2 + q(z), (5) 

with the potential such that q(z + L) = q(z) is at least three 
times continuously differentiable. LetYI,2 (z,A) be solutions 
of the Hill's equation 

(6) 

satisfying the boundary conditions Y I (O,A) = Y2 (O,A) = 1, 
Y; (O,A) = Y2 (O,A) = 0. The monodromy matrix relates the 
solutions Yi (z + L,A) to Yi (z,A). That is, we have 

(
YI (L») = (YI (L) Y; (L »)(YI (0») = M (YI (0») (7) 
Y2(L) \v2(L) Y2 (L) Y2(0) "Y2(0)' 

The discriminant !::J.(A) of Hill's equation (6) is defined to be 
the trace of this matrix 

(8) 

The determinant of M" is just the Wronskian of the two 
solutions; that is, 1. The characteristic equation for the 
eigenvalues of M" is then 

p2 _ !::J.(A)p + 1 = 0, (9a) 

_ !::J.(A) ± [!::J.2(A) _4]1/2 
P ± - 2 ' P+P- = 1. (9b) 

Setting P ± = e ± iaL, Floquet's theorem 10,11 tells us that 
when these roots are distinct (6) has two linearly indepen
dent solutionsfl'fz such that 
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fl(z) =eiazPI(z), fz(z) =eiazp2(z), (10) 

where PI and P2 are periodic functions with period L. 
From (9) and ( 10) we see the Hill's equation has stable 

s~lutions. provided I!::J. (A) I < 2. The solutions of I!::J. (A) I = 2 
gIVe the tntervals of stability and instability. Let Ai be the 
s~lutions of this equation (see Fig. 1). Then for (Ali _ I ,Ali ) 
(I = ?, 1,2, ... ) we have an interval of instability; no solution 
here IS bounded. The complementary intervals (A . 1. ) • ~~~+I 
(.' = .0, 1 ,2, ... ) are the intervals of stability: here every solu-
tIon IS bounded, but none is of period L or 2L. These inter
vals of stability are just the conduction and valence bands for 
the SchrOdinger equation (6). The Ai represent the periodic 
spectrum; the solutions have period L for A A. 1 . · 0' 4.-1' /1.4. 

(I = 1,2, ... ); the solutions have period 2L for A . 1 · 4. + I , /l.4i + 2 

(I = 0,1,2, ... ). In general, the solutions at the end points are 
unstable. This is always true for AD. Solutions are stable if an 
interval of instability collapses-that is, if we have a double 
~oot A2i _ I = A2i · We call the simple roots the simple period
IC spectrum. Obviously these come in pairs apart from AD. 
. We may now proceed to construct resolvents--depend
tng on the boundary conditions-for the functions (3) and 
( 4) out of the monodromy matrix M" . Obviously !::J. (A) ± 2 
= (Tr[ M" ± 1] ) = ° has the antiperiodic and periodic 

spectrum as roots. Dirichlet boundary conditions are given 
by the root~ of (M,..)21 =Y2(L,p,) = 0. The rootsf.li ofthis 
latter equatIon, known as the auxiliary spectrum. interlace 
the periodic spectrum withf.liE[A2i_l,A2i] (i= 1.2 .... ). In 
what follows we shall concentrate on the former boundary 
conditions even though similar results are available for the 
auxiliary spectrum. 

The first step in constructing a resolvent is summarized 
in the following. 

Proposition i: 

tr'(KS-K~) =~ r dAAs~ln[!::J.(A) +2]. (11) 
211T Jr dA !::J.o(A) + 2 

The proof of this follows from the fact that !::J. (A) is an 
integral function of ordeq (see Refs. 12 and 16). [!::J. (A) is 
an entire function of the complex variable A and there exist 
constantscl, C2 such that (i) I!::J.(A) lexp - CIIA 11/2 is bound
edfor alIA; and (ii) I !::J. (A) lexp - C21A 11/2 diverges for A real 
...... - 00.] So too is !::J. (A) + 2 and thus it possesses a product 
expansion of the form 

c I II(I--A )(1 __ ,1 ). 
n=O A4n+ I A4n+2 

Here the trace in (11) is over the antiperiodic spectrum' 
with suitable modifications it can be made over the periodi~ 
spectrum. which includes the zero mode A = 0. The contour 
r encloses the real positive A axis passing between ° and the 
first pole at AI' Note that (11) naturally accounts for the 

~r---~---i~----~~----~--~-----

FIG. 1. The discriminant bo(A.). 
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right multiplicity of periodic solutions, there being two when 
an interval of instability collapses and we have a double root. 

Here ao(A), which appears in (11), is the discriminant 
corresponding to the simple harmonic oscillator vacuum so
lution 

[ - ~; + U"(t/Jvac) k=AY. 

By redefining A we can make this vacuum subtraction simply 

d 2 2n + 1 
--Y=AY, ./T =--1r. 

tJil L 
With such a shift the potential corresponding to a (A) be
comes 

q(z) = U"(t/Jel) - U"(t/Jv.,')· (12) 

We remark that in the usual accounts of Hill's equation the 
normalization for q(z) is taken to be S~ q(z)dz = O. We are 
unable to impose this, so caution is necessary in taking for
mulas directly from the standard accounts. Let 

a = iL 

q(z)dz. (13) 

After such a shift in the vacuum energy we may write 
(11) as 

treKS -K~) 

=_1 (dA[A+U"(t/J )),..!!...In[a(A) +2], 
2i1r Jr vac dA ao(A) + 2 

(14) 

where aa(A) now corresponds to the shifted simple harmon
ic oscillator. Similarly, 

tr(S!!""K 5
-

1) =_s_ ( dA [A + U"(t/J »),-1 
L 0 2i1r Jr vae 

a d x--In[ao(A) + 2]. (15) 
L dA 

Using the regularization described in the Introduction, 
Eq. (3) becomes, upon substitution of (14) and (15), 

M(s) =_1_ ( dA..!!... [A+ U"(t/Jvac)]'ln[a(A) +2] 
4i1r Jr dA ao(A) + 2 

-4~ (dA[A+U"(t/Jvac)]'-1 
11r Jr 

X {In MA) +2 +!!......!!...In[a (A) +2]} 
ao(A) + 2 L dA 0 

= - 4~ (dA [A + U"(t/Jvac) ],-1 
11r Jr 

X {In a(A) +2 +!!......!!...In[a (A) +2]}. (16) 
ao(A) + 2 L dA 0 

Now the integrand in (16) has a branch cut along the nega
tive A axis to - U" (t/Jvac)' Using standard asymptoticlO,ll 
estimates we find 

a(A) +2 = 1 + tan ./TL _a_+O(A -1). (17) 
ao(A) + 2 2 2..jT 

Further, the properties already mentioned of a(A) show us 
that the quantity 
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I(A) = {In a(A) +2 +!!......!!...In[ao(A) +2]} (18) 
ao(A) + 2 L dA. 

is continuous across the branch cut. Finally, as may be 
shown directly or from a more general analysis (to be given 
in the next section), 

..!!...In[ao(A) + 2] = - ~ tan ./TL . (19) 
dA 2./T 2 

The mass counterterm then cancels the A - 1/2 term in (17). 
The integrand of ( 17) for S < 1 is seen to become vanishingly 
small on a large circle. We can then change the contour of 
integration to encircle the A plane, avoiding the cut by going 
above and just below it. Doing this we pick up a discontin
uity across the cut coming from 

( - A + iO)5 = A Sei1TS, (- A - iO)5 = A 5e - i1TS. 

Changing the contour we get 

2M( ) 
_ sin 1r(s - 1) 

S - - S --"----~ 
1r 

Thus we have established the following. 

Lemma 2: 

M(s) = ssin1rs (00 dA [A- U"(t/Jvac)]S-1( -A). 
21r Ju·(~v .. ) 

(20) 

The asymptotic estimates ( 17) show this quantity is fin
ite at s =!. Some comments are in order. First, when s is 
integral, the rhs of ( 14) has a pole term which is picked up by 
the sin 1rS term. Thus the usual trace formulas l2

,I6,I7 reduce 
to the expression of residues. Unfortunately, for s half-inte
gral we have to subtract off the pole term-here the mass 
counter term-and we are still left with the calculation of a 
finite piece; there appears no analog of the trace formulas as 
yet to simplify this, Second, care is needed when changing 
the contour of integration. If we had not been dealing with 
subtracted quantity we would have had contributions from 
the large circles. 

Equation (20) now gives us a closed expression for the 
mass corrections. To proceed further we need some expan
sions for a ( - A) + 2. Fortunately the shift in integration 
means we can look at asymptotic expansions to/( - A). The 
heart of the problem becomes finding tractable expansions 
for 

In a( - A) + 2 . 
ao( -A) + 2 

We consider two approaches to this. The first is general to all 
Hill's equations with a sufficiently smooth potential. The 
second, making contact with integrable systems, will be con
sidered in the next section. 

After some straightforward changes in the usual 
proofs10 we have the following. 

Lemma 3: If the potential q(x) possesses a Fourier ex
pansion 
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i21Tnx 
q(x) = Lan exp -z.-' 

then 

A(A) + 2 = 4 cos2(.JTL /2)D1(A), 

where 

(21) 

(22) 

D1(A) = lIc5n,m - (an_ m )/[A - (1T/L)(2n + 1)f]lI~ 00' 

(23) 

Using Lemma 3 we then have 

In a( -A) +2 =lndetl1 + WI 
ao( -A) +2 

00 -1 
= Trln[l + W] =Tr L -( - W)p 

p=1 P 
(24) 

and 

(W)n,m =an_m/[A + (1T/L)[2n + 1W]. (25) 

For a potential with few Fourier coefficients this expan
sion can be used. We note again the mass renormalization 
( 19) cancels the first term in this expansion 

a 1 a.JTL 
Tr W = L ~ A + (1T/L)(2n + 1 »)2 = 2.JT tanh -2-' 

This gives us an expansion for the mass correction 

c5M=_l_ roo dA [A _ U"(¢vac)]-1/2 
41T JU"(4)vac) 

00 1 
XTr L -( - W)p. 

p=2 P 
(26) 

To conclude this section it is perhaps worth noting that 
we may well be able to solve the Schrodinger equation (5) 
and construct the discriminant a (A) explicitly (8) in terms 
of elementary solutions. In practice we are hindered from 
using this---even for quantum mechanics-because the 
eigenvalue A is seldom simply related to the parameters that 
characterize the elementary solutions. This point is clearly 
seen in Ref. 18. 

III. INVERSE SCATTERING AND MASS CORRECTIONS 

In the previous section we expressed in terms of the dis
criminant of the associated Hill's operator the regularized 
functional determinant that appears in the semiclassical ap
proximation. The finiteness of this expression was made 
manifest and a general expansion (26) provided in terms of 
the Fourier coefficients of the potential. For a general poten
tial, however, whose Fourier expansion passes beyond just a 
few coefficients, this expression rapidly becomes intractable. 
Indeed the potentials associated with soliton and kink-type 
fields have an infinite Fourier series. To deal with these latter 
theories we now describe an alternate expansion for the dis
criminant which takes a particularly simple form for soliton 
related background fields. Here we shall make connection 
with the inverse scattering approach. 

There is one further property of the discriminant a(A) 
of which we have not made use. This is the remarkable result 
ofHochstadt: the simple periodic spectrum determines both 
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the double periodic spectrum and the nontrivial roots of 
a'(A) = 0 (Ref. 14). Physically this is saying that given the 
edges of the various conduction bands for the SchrOdinger 
equation (6) we can construct the periodic spectrum. Fur
thermore, we have a simple representation for this. 

Suppose there are n + 1 bands with edges given by 
A g ,oo.,A. ~n' The nontrivial roots X of a' (A) = 0 are deter
mined by the conditions 

i
..t~j n - dp 

0= II (p -Ak )-, 

..tt_,k=1 /(p) 
(27) 

where /(p) in 27 is determined by the simple periodic spec
trum 

(28) 

Having determined the nontrivial roots Xj the discriminant 
may be expressedl2 in the following form: 

a(A) = 2 cos r/J(A)L, (29) 

with 

(30) 

Hochstadt's result then says r/J(A) = ± m1T/L if A = A2m _ 1 

orA =A2m . That is, (27) and (29) show the simple periodic 
spectrum determines both the nontrivial roots of a' (A) = 0 
as well as the double periodic spectrum. 

We remark in passing that for the simplest example, 
the simple harmonic oscillator with potential "a," 
/(A) = (a _A)I/2, and a(A) = 2 COS(A - a)I/2L. For 
more complicated potentials these expressions have also 
been calculated. 18.19 

At this stage then we have replaced the calculation of 
a (A) by the determination of the simple periodic spectrum. 
Using (29) we then have 

In a(A) + 2 = 21n sin r/J(A)(L /2) 
ao(A) +2 Sin(A 1/2L/2) 

(31) 

and soon. 
So far we have not mentioned integrable systems or soli

tons, and there is no reason as yet to consider determining 
the simple periodic spectrum at all straightforward. The 
connection with integrable systems is the following: just as 
the KdV equation is associated with a Schrodinger equation 
and an isospectral deformation in the usual theory of inte
grable systems, it is also true that the KdV equation-and 
indeed any member of the KdV hierarchy-preserves the 
periodic spectrum of Hill's equation. 12,16,2o,21 The hyperel
liptic curves (27) and (30) reflect this underlying integrable 
structure just as solving by quadratures reduces to evaluat
ing hyperelliptic integrals. Next,just as solitons are associat
ed with particularly simple scattering problems (Schro
dinger equations), their periodic analogs are also associated 
with a particularly simple subset of Hill's operators: the fin
ite zone Hill's operators. These are Hill's operators whose 
simple periodic spectrum is finite in number. Physically they 
are the one-dimensional lattice potentials with a finite num
ber of conduction and valence bands; for n + 1 bands there 
correspond 2n + 1 simple eigenvalues. One Hill's equation 
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classically studied with these properties is Lame's equa
tion22-24 

[ - :; + n(n + l)k 2 sn2 (z,k) ]Y = (A + an )y. (32) 

Here a is a constant and sn(z,k) an elliptic function. A 
theore~ of Borg2S in fact tells us that there is one band if and 
only if the potential q is constant; a theorem of Hochstadt 
tells us there are two bands ifand only if the potential is given 
by the n = 1 form of Lame's equation. IS Actually the mani
fold of potentials9 with fixed simple spectrum has been de
scribed in Ref. 12. This work generalizes the results of Borg 
and Hochstadt and shows that most finite gap operators are 
not just of Lame type; the general shape of the potentials q 
for n;>2 is still unclear (see Ref. 12 for further 'comment). 

Soliton associated potentials then are associated with 
finite zoned Hill's operators. Although for a general poten
tial of this class an expression for the simple periodic spec
trum may prove intractable, in particular cases this may be 
explicitly calculated. As we mentioned in the Introduction 
the n = 1, 2 forms of Lame's equation occur for physically 
interesting theories and fortuitously these examples fall into 
the latter group. Indeed, for general n Lame's equation has 
2n + 1 known simple eigenvalues and the solutions corre
sponding to these are the Lame polynomials.23

,26 The quan
tum mechanical version of the n = 1 theory is treated in Ref. 
18 where the quantities described thus far are explicitly cal
culated. 

We must now show how these connections with integra
ble systems and finite zone Hill's operators yield the usual 
soliton mass corrections in terms of the asymptotic scatter
ing behavior of the Schrodinger equation, i.e., the phase 
shift. If we have the phase shift 6 (A) defined as the difference 
between the eigenvalues in the presence of a potential and 
those in its absence, we have, from our definition Y,(A), (29), 
and Hochstadt's result, 

6(A) = Y,(A) - [j: (33a) 

= i eo 
dA (~ nj= Il~~;Ai) - ~). (33b) 

For a finite zone operator this expression is calculable. 
Indeed in the L ..... 00 limit when Lame's equation reduces to 
the usual reflectionless potential 

q(z) = -n(n+l)/cosh2z+a~, (34) 

the expressions (33) agree (up to conventions) with the usu
al phase shifts. It is worth emphasizing that (33) is L depen
dentthrough theL dependence of the simple eigenvalues A ? 
This can be made manifest and the L dependence can be 
treated systematically. Further, there are useful asymptotic 
expansions for Y,(A) that arise because ofits connection with 
an integrable system. Using the results of Ref. 12 we may 
derive simply the asymptotic result 

Y,(A) - jto Hi; I [A j _10/2) - At _10/2) ] • (35) 

Here the Hj _ 1 are functions of q,q', etc. The factors 11 de
pend on authors; the lowest terms are 
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Ho 1 II 
H_I= -1, 2= 2L 0 qdx, 

HI = _1_ rL 
q2(x)dx, 

4 8L Jo (36) 

H2 = _1_ rL 

[2q3 + (q')2]dx. 
8 32L Jo 

For finite zone operators these lead to attractive trace for
mulasl2

,13 but we shall not use these here. 
We conclude by deriving the usual R 2 mass corrections 

for the ¢4 static kink solution. Although we are not strictly 
dealing with a soliton, the small oscillation problem about 
the periodic classical solution is in fact the n = 2 form of 
Lame's equation (32) and so the semiclassical corrections 
may be treated within our framework. Choosing our con
stants so that the L ..... 00 limit of (32) yields 

d 2 6 
K= --+4--- (37a) dr cosh2y' 

(37b) 

we find from (33) the L independent piece to the phase shift 

6(A) = - 2 tan- I [ 3[j: ]. (38) 
(2 -A) 

In this limit the A ? correspond to the bound states of the 
potential (37a). Similarly expanding our general expression 
(20) we find 

6M = __ 1_ {eo dA [A _ 4] -1/2 

m 41r J4 

X{2tanh- 1 3[j: +_a_} 
2 +A 2[j: 

= - (3hr) [1 -1T/~]. (39) 

The result is the standard one,3 though derived by a 
different route. The expansion (35) and (36) corresponds to 
the Taylor expansion of the inverse tangent (38). It is inter
esting to note how the bound states of the potential (37 a) 
corresponds to the coalescing of the simple periodic spec
trum of the associated Hill's equation. This observation, 
which is in fact general, is just reexpressing Levinson's 
theorem. 

IV. CONCLUSION 

In this paper we have examined the semiclassical quan
tum corrections for static field configurations on S I X R. In 
Sec. II we found a general expression (20) for the quantum 
mass corrections in terms of the discriminant of the associat
ed Hill's operator; even for the nonstatic case this quantity 
will appear. The evaluation of quantum corrections then re
duces to finding suitable expansions of this discriminant; one 
in terms ofthe Fourier components ofthe potential was giv
en. Several advantages appear by bringing the discriminant 
to the foreground. Section III noted several of the connec
tions between this quantity and the theory of integrable sys
tems. There we saw how the discriminant could be con-
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structed from a subset of the Hill's operators spectrum; this 
is the analog of the bound state information needed in the 
usual inverse scattering analysis. For certain Hill's opera
tors, this subset is in principle both known and finite, and we 
then constructed the quantum mass corrections in terms of 
this. For both (r and the sine-Gordon theories the operators 
that arise are the finite zone operators of Lame type with 
these properties and as an example we found the usual ¢J4 
mass corrections as the L --+ 00 limit of our analysis. A parti
cular advantage of this analysis is that the L dependence 
becomes amenable to study. Last, by focusing on the dis
criminant we can isolate what features are general to any 
Hill's operator by virtue of its connection with an integrable 
system and those that are peculiar to its finite zone charac
ter. Though trace formulas exist for the operators under dis
cussion when the eigenvalues appear to integral powers no 
similar formulas exist as yet for half-integral powers: such 
generalized trace formulas would lead to new evaluations of 
the mass correction presented here. 
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The reduction by the subgroups ofthe conformal group space-time ofthe Wess-Zumino model 
and the four-dimensional simple (N = 1) supersymmetric Yang-Mills theories is considered. 
It is shown for both models that the translations are the only subgroups of the Poincare group 
that leave a supersymmetric residual system on the reduced space if we require compatibility of 
the reduction with all Poincare supersymmetry transformations. 

I. INTRODUCTION 

In previous papers, a study of the geometric formulation 
of invariant gauge fields under smooth group actionsl.2 has 
been used to reduce gauge3

•
4 and matter-coupled gauge5

•
6 

systems under subgroups of the conformal group of space
time. Hamiltonian interpretations of the residual systems 
have been given and a number of invariant solutions found. 
As a next step in these investigations, we address ourselves to 
the symmetry reduction of supersymmetric models. 

The (manifest) supersymmetries of the S matrix in 
more than 1 + 1 dimensions have been classified by Nahm.7 

He has also obtained the representations of the flat space
time supersymmetries and presented examples with super
multiplets containing a vector as their highest spin compo
nent. In this article, we start instead from a definite 
representation of a supersymmetry to generate supersymme
tric models in lower dimensions by symmetry reduction. 
This approach has been successfully applied in flat space
time by Brink, Schwarz, and Scherk,8 who derived the ex
tended supersymmetric Yang-Mills models in 3 + 1 dimen
sions from higher dimensional N = 1 supersymmetric 
Yang-Mills models. 

In the following, we examine the Wess-Zumino model9 

and the four-dimensional N = 1 supersymmetric Yang
Mills system. IO

•
11 Our purpose is to identify group actions 

leading to supersymmetric reduced systems. First, we pres
ent in Sec. II the invariance conditions for the fields of the 
(on-shell) supersymmetric multiplet involved in each mod
el. In Sec. III, we show that the translations are the only 
subgroups (compatible with all Poincare supersymmetry 
transformations) of the invariance group of the massive 
Wess-Zumino model that leave a supersymmetric residual 
system on the reduced space. Next, we devote Sec. IV to the 
investigation of the N = 1 supersymmetric Yang-Mills the
ories. We look for subgroups of the conformal group 
[C( 3, 1) ] leading to reduced supersymmetry. It is found that 
the translations fulfill this requirement among the sub
groups of the Poincare group [P(3,1)]. We also give a con
dition for the subgroups of C( 3, 1). In the Appendix, a re
duction of a supersymmetric Yang-Mills system without 
residual supersymmetry is discussed. 

a) Address after 1 September 1986: Centre de Recherches Mathematiques, 
Universite de Montreal, C.P. 6128, Succursale A, Montreal, Canada, 
H3C 317. 

II. INVARIANCE CONDITIONS 

The action of a symmetry group G on Minkowski space 
(M) generates a number of strata on which the invariance 
conditions are solved, each stratum being the set of orbits 
with conjugate isotropy subgroups (Go). For tensor and 
spinor fields, the invariance conditions under the action of 
the subgroups ofthe conformal group are, respectively, giv
en in Refs. 12 and 13. However, for a multiplet of Dirac 
spinor fields transforming under a representation (D) of the 
gauge group (H), we have the following expression5

: 

'I1(gx) = D (gJ(x») ® D (p-I (g,x) )'I1(x), (2.1) 

for every elementgEGCC(3,1), wherexEM, D is the repre
sentation of the Jacobian (J) of the group transformation g 
[ which is for an orthonormal frame the product of a confor
mal factor and the direct sum of the (!, 0) and (0, !) basic 
representations of SL(2,C)], and p: G XM ..... H, is the 
"transformation function"l which characterizes the group 
action on the gauge bundle. In order to determine the invar
iant fields, we have first to solve the isotropy condition, i.e., 
the set of linear algebraic equa'tions derived from the invar
iance condition at the isotropy point Xo of each orbit for each 
element (go) of the isotropy subgroup at this point 
[Go(xo)]. The isotropy condition for the spinor fields multi
plet derived from (2.1) is 

'I1(xo) =D(goJ(xo»)®D(A,(go»)'I1(xo), (2.2) 

where A, (go) =p-l(gO,xO)' corresponds to the homomor
phism of Go into the gauge group classifying the gauge bun
dles admitting a lift of the group action (see Ref. 1). We 
obtain the invariant field on each stratum by acting with G 
on the solution to the isotropy condition (2.2) and by 
smoothly (COO ) joining (if possible) on the stratum the re
sulting fields on each orbit (for details and examples, see 
Refs. 12 and 13). 

As for the invariant gauge fields, they satisfy, for every 
gEG, the condition I 

(f:{J)(x) = Adp-l(g,x){J)(x) +p-I(g,x)dp(g,x), 
(2.3) 

where (J) is a gauge field (one-form connection) and Ad de
notes the adjoint r.epresentation of the gauge group. Their 
isotropy condition is simply 

(f!{J)(xo) = Ad A, (go){J)(xo)' (2.4) 

Let us note that the compatibility between the invar
iance conditions and the gauge transformations requires that 
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a gauge field w', obtained from a gauge transformation h (x) 
on w, obeys the invariance condition (2.3) with a transfor
mation functionp'(g,x) given by 

p'-I(g,X) = h -1(X)p-l(g,x)h(x). (2.5) 

III. WESS-ZUMINO MODEL 

The (on-shell) Wess-Zumino model is formed of one 
complex scalar field (¢) and one anticommuting Majorana 
spinor field (Weyl component: t/J) with the following La
grangian density, written in the Weyl spinor notation (see 
Ref. 14): 

.Y' = !(al'¢ al'¢* - m2¢*¢) 

+ !ut/Jul' a!, ~ + i~ul' a!, t/J - m# - m~~). 
(3.1) 

The (on-shell) supersymmetry transformations leaving the 
corresponding action invariant are 

(3.2) 

and 

(3.3 ) 

where E and E are defined as the SL(2,C) components of the 
infinitesimal anticommuting Majorana spinor parameter. 

Since the reduced systems are required to be super
symmtric, the fields (¢' and t/J') resulting from any super
symmetry transformation must also satisfy the invariance 
conditions imposed on the original fields ¢ and t/J: 

¢'(gx) = ¢'(x) (3.4) 

and 

t/J'(gx) = D O/2,O)(gJ(x»)t/J'(x), (3.5) 

where ¢' = ¢ + 6,,¢, t/J' = t/J + 6"t/J, and D O/2,O) stands for 
the (!, 0) basic representation of SL(2,C). The invariance 
conditions and all the supersymmetry transformations are 
then compatible if 

and 

(6"t/J)(gx) = D (gJ(x) )(6" t/J)(x), 

for all geG and all E. 

In addition to the invariance condition 

t/J(gx) = D (1/2,O)(gJ(x»t/J(x), 

(3.6) 

(3.7) 

(3.8) 

we find from the transformation (3.2) and the condition 
(3.6) that the spinor t/J is subjected to the constraint 

t/J(gx) = t/J(x). (3.9) 

Moreover, the invariance condition for massive ¢, the trans
formation (3.3) and the condition (3.7) imply that 

¢*(x)(l2-Do/2,O)(gJ(x»)) =0, (3.10) 

for all geG. Assuming a nontrivial invariant scalar field ¢, we 
deduce from (3.10) that the spinor representation of the 
Jacobian must be the identity at any point of the stratum. 
Although the invariance group of the model is the Poincare 
group, only the translations (neglecting the discrete sub
groups) satisfy the above constraint. These subgroups also 
ensure the compatibility between the conditions (3.8) and 
(3.9). Consequently, the translations are the only (contin-
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uous) space-time transformations allowing reductions of the 
massive Wess-Zumino model with residual supersymmetry. 
For example, the invariance under two-dimensional space 
translations yields a supersymmetric system composed of a 
noninteracting Dirac spinor field with a scalar field in 1 + 1 
dimensions. The residual supersymmetry transformations 
are easily obtained by substituting the invariant fields in the 
formulas (3.2) and (3.3). 

IV. SIMPLE SUPERSYMMETRIC YANG-MILLS 
SYSTEMS 

A simple (N = 1) supersymmetric Yang-Mills theory 
(on-shell) in 3 + 1 dimensions consists of a Yang-Mills 
field minimally coupled to a multiplet of anticommuting 
Majorana spinor fields transforming under the adjoint rep
resentation of the gauge group. Its Lagrangian density, ex
pressed in the Weyl spinor notation (see Ref. 14), is 

.Y' = - !F;vFI'Ya 

+ (i12) [f'ul'(DI't/J)a + ~ul'(DI'~)a], (4.1) 

where Fl'v represents the field strength corresponding to the 
gauge field wI" DI' is the covariant derivative with respect to 
the gauge field, and t/J is the (!,O) Weyl component of the 
Majorana spinor field. The corresponding action is left in
variant under the following (on-shell) supersymmetry 
transformations, which form a representation of the super
Poincare algebra: 

(4.2) 

and 

(4.3) 

where E and E are the SL(2,C) components of the anticom
muting Majorana four-spinor parameter If, and 'I' is the 
four-component Majorana spinor field with values in the Lie 
algebra of the gauge group. (Use ofthe four-spinor notation 
will sometimes be made for brevity. 14) 

As in Sec. III, a reduced supersymmetry is ensured if the 
invariance conditions are also imposed on the gauge and 
spinor fields coming from any supersymmetry transforma
tions (4.2) and (4.3). This means that 

and 

(f;w') (x) = Adp-I(g,x)w'(x) + p-\g,x)dp(g,x) 
(4.4) 

t/J'(gx) = D O/2,O)(gJ(x») ® Adp-I(g,x)t/J'(x), (4.5) 

wherew' = w + 6"w and t/J' = t/J + 6" t/J. Let us remark that a 
supersymmetric residual system is also produced if the fields 
w' and t/J' are gauge equivalent to invariant fields. We discuss 
this case at the end of this section. 

From Eqs. (4.4) and (4.5) and the invariance condi
tions for the gauge field (w) and the spinor field (t/J), we get 

and 

(f;6"w)(x) = Adp-l(g,x)6"w(x) (4.6) 

(6"t/J) (gx) = DO /2.0)(gJ(x») ® Adp-I (g,x)6"t/J(x). 
(4.7) 

These conditions hold for every Majorana spinor E (i.e., for 
every Poincare supersymmetry transformation) if we have 
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and 

ul'1/!(gx)gJ(x)l''v = Uy Adp-l(g,x)1/!(x) (4.8) 

ql'YFI'Y (gx) = D(l/2.0)(gJ(x»)qI'Y Adp-l(g,x)FI'Y (x). 

(4.9) 

At the isotropy point X O' the above expressions simplify to 

ul'1/!(xo)goJ(xo)l'y = uY Ad A (go)1/!(xo) (4.10) 

and 

ql'YFI'Y (xo) = D (l/2.0)(goJ(xo» ql'Y Ad A (go)FI'Y (xo), 

(4.11 ) 

where goeGo. Substituting, respectively, the isotropy condi
tions for the spinor field and the field strength in Eqs. (4.10) 
and (4.11), we find the constraints 

[ul'goJ(xo)l'y - uyD -1(goJ(xo»]1/!(xo) = 0 (4.12) 

and 

[ql'Y - D (goJ(xo) )ifPgoJ(xo)1' A goJ(xo)Yp ]FI'Y (xo) = 0, 
(4.13 ) 

where 1/!(xo) and FI'Y (xo) are assumed to be nontrivial. 
We next look for the symmetry subgroups of P(3,1) 

obeying (4.8) and (4.9) with the invariant fields 1/! and FI'Y' 
Choosing an orthonormal frame on Minkowski space, the 
Jacobian matrix goJ(xo) induces a homomorphism of the iso
tropy subgroup Go into the Lorentz group SO(3, 1). There
fore Eq. (4.12) can be written as 
[D(l/2·0)(g"A -l)t _ 12]uyD(l/2·0)(g"A -1)1/!(X

O
) = 0, 

(4.14) 
with go AeSO (3,1 ). However, no one-parameter subgroup of 
SO (3,1) satisfies (4.14). Since condition (4.14) is preserved 
by conjugations under SO(3,1), this can be shown by con
sidering only the one-parameter subgroups ofSO( 3, 1) up to 
conjugations by SO(3,1): COS¢JL3 + sin¢JK3 (0<"¢J<1T), 
and L2 + K 1 (Ref. 15), where Li stands for the generator of 
the rotations around the Xi axis, and Ki' for the generator of 
the boosts along the Xi axis. But no nonvanishing 1/!(xo) ful
fills this condition for each of these one-parameter sub
groups of SO (3,1). Hence the image of the Jacobian homo
morphism at Xo is the identity element (since we ignore the 
discrete subgroups), which means that Go(xo) is included in 
the kernel of J(xo)(Go(xo) ~ Ker J(xo»). For the action of 
any subgroup of P( 3, 1) on Minkowski space, the kernel of 
J(xo) ~ T( 4) (the pure translations in four dimensions), 
and thus Go~T(4). This implies that Go(xo) is the identity 
element. Consequently, the homomorphism A is trivial and 
from Corollary 3 of Ref. 1, the transformation function 
equals the identity (p-l(g,X) = e). 

Returning to Eq. (4.8), the value ofp enables us to write 

ul'1/!(gx) gAl'y = u y1/!(x). (4.15) 

With use of the invariance condition (2.1) for the spinor 
field, this relation becomes 

[D(l/2·0)(gA -l)t - 12]uy1/!(x) = 0, (4.16) 

for every value of the index v and at every point x of the 
stratum. But there exists no nontrivial spinor field 1/!(x) that 
obeys this equation for any of the one-parameter subgroups 
of SOC 3, 1). As in the isotropy case, one can arrive at this 
result by looking at the above-mentioned one-parameter 
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subgroups of SO (3,1). We are thus left with the translations. 
The compatibility condition (4.9) for the invariant field 
strength FI'Y is also satisfied for these subgroups. Hence, 
only the reductions by translations permit a supersymmetry 
preserving the set of invariant fields. An example of such 
reductions is detailed in Brink et al.8 for two-dimensional 
space translations where a Yang-Mills system interacting 
with a complex scalar field and a Dirac spinor field in 1 + 1 
dimensions is derived. 

Let us make a brief comment on the possible reductions 
for the subgroups of the conformal group C(3,1). With a 
choice of orthonormal frames, the Jacobian at Xo is a homo
morphism of Go into the direct product of the Lorentz group 
with the group of dilatations: 

goJ(xo): goeGo(xo)f---+eAg.(Xo) goA(xo)eR+ xSO(3,1), 
( 4.17) 

where Ago (xo)eR and go AeSO(3,1). The isotropy condition 
( 4.10) then reads 

[ A",,(Xo)-I'BoA( )1' e q Xo Y 

- e - (3/2)Ag.(Xo) uyD (l/2.0)(goA -I (xo»)] 1/!(xo) = O. 

(4.18) 

It turns out that all the one-parameter subgroups of 
R + X SOC 3, 1) force the spinor field at the isotropy point to 
vanish. Thus we conclude that Go(xo) ~ Ker J(xo)' 

Finally, in the hope of finding new subgroups leading to 
supersymmetric systems, we relax the compatibility condi
tions (4.4) and (4.5) by replacing the transformation func
tionp by a gauge equivalent one [see Eq. (2.5)]: 

(/;a/) (x) = Adp,-I(g,x)aI'(x) 

+p' -I(g,x)dp'(g,x) (4.19) 

and 

\f!'(gx) = D (gJ(x») ® Adp' -1(g,x)'II'(x). (4.20) 

It corresponds to allow each invariant field transformed by a 
supersymmetry to be equivalent up to a gauge transforma
tion (which can be a function of the Majorana spinor param
eter 'C) to a field of the set of invariant fields under the 
symmetry group G. On the other hand, these conditions in
volve explicitly the transformation function p. 

For G C P( 3, 1 ), the following expressions in four-spinor 
notation are deduced from (4.19) and ( 4.20) atthe isotropy 
point (for every value of the Majorana spinor 'C): 

XI' (xo,'C)goAl'y = Ad A (go)Xy (xo,'C) (4.21) 

and 

D -1(goA)ct>(xo,'C) = AdA(go)ct>(xo,'C), 

with the definitions 

(4.22) 

and 

XI' (xo,'C) =Ad h(xo,'C) [~rl' 'II (xo) - all' (xo)] 
(4.23) 

ct>(xo,'C) =Ad h (xo,'C) [FI'Y(xo)qI'Y 'C - 'II (xo>] . 
(4.24) 

If Go = {e}, then p' = p = {e}, and therefore, no sym
metry groups other than the translations are admissible. 
For Go:;6{e}, Eqs. (4.21) and (4.22) for XI' (xo,'C) and 
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<I» (xo, 'll) are, respectively, equivalent to the isotropy condi
tions for the gauge field wI-' and the spinor field '11, and thus 
the solution XI-' has the same form as wI-' (xo), and the solu
tion <1», the same as '11. Since '11 (xo) and w(xo) span different 
subspaces of the gauge algebra (when Go# {e}), there exists 
no Ad h (xo, 'll) automorphism of the gauge algebra such 
that (4.23) and (4.24) are satisfied, and therefore no new 
supersymmetric residual system is obtained. In the Appen
dix, we look at the SO ( 3 ) invariant gauge and spinor fields of 
the SU(3) supersymmetric Yang-Mills system as an exam
ple of the above discussion. 

V.SUMMARY 

We have investigated in this paper the reduction by sym
metry of two simple supersymmetric models. We have found 
that the massive Wess-Zumino model can be reduced to su
persymmetric systems by the translation subgroups of the 
Poincare group by looking at the compatibility between all 
the supersymmetry transformations and the invariance con
ditions. The residual supersymmetry is derived by substitu
tion of the invariant fields in the supersymmetry transforma
tions of the model. We have also studied the N = 1 
four-dimensional supersymmetric Yang-Mills system. It 
has been shown that no residual supersymmetry is left for 
any subgroup of the Poincare group except the pure transla
tions (if we demand compatibility of the reduction with all 
Poincare supersymmetry transformations), and that a re
duced supersymmetry requires at least a trivial Jacobian ho
momorphism of the isotropy subgroup for any subgroup of 
the conformal group. No other subgroup of P( 3, 1) produces 
such reductions even if we relax the compatibility conditions 
by allowing each invariant field tranformed by supersym
metry to be equivalent up to a gauge transformation to a field 
of the set of invariant fields under the symmetry group cho
sen. Finally, the SOC 3) invariant gauge and spinor fields of 
the N = 1 supersymmetric Yang-Mills system with gauge 
group SU (3) are discussed in the Appendix as an example of 
a reduction that leaves no supersymmetry. 

In future work, it would be interesting to study the sym
metry reduction of higher-dimensional supersymmetric sys
tems to four-dimensional supersymmetric models. For in
stance, this method can be applied to derive the SO(8) 
supergravity model from simple supergravity in 11 dimen
sions. 16 Further results have been published recently by 
Manton17 who considered nontrivial coset spaces as extra
dimensional compact manifolds. 
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APPENDIX: SO(3) INVARIANCE OF THE SU(3) ON
SHELL SIMPLE SUPER-YANG-MILLS MULTIPLET 

In the following, we give an example of a reduction lead
ing to a residual system which is not supersymmetric. For 
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simplicity, we look at the N = 1 supersymmetric Yang
Mills system with gauge group SU (3) reduced by symmetry 
SO (3). The SO (3) reduction of the same model with gauge 
group SU(2) leaves only a Yang-Mills field and a multiplet 
of scalar fields. We use for that purpose the Gell-Mann rep
resentation of the generators A.a ofSU(3), with a = 1, ... ,8, 
and their adjoint representation (A. ~d) b C = - (fa) b C (a, b, 
e = 1, ... ,8), where the quantitiesfab C are the structure con
stants of the Lie algebra su ( 3 ). The orbits generated under 
the action of SO (3) are two-dimensional spheres that form a 
stratum parametrized by the time tElIt and the radii reR + of 
the spheres, leaving the origin as a singular orbit. 

The invariant gauge field is obtained either by the invar
iance condition (2.3) or equivalently by the Theorem 2 of 
Ref. 5. In the former case, the transformation function can 
be written as an extension of the homomorphism A. of the 
isotropy group SO (2) into SU (3). For any isotropy point Xo 

along the z axis, except the origin, the isotropy subgroup 

consists of the rotations l?L,. Accordingly, we choose the 
following homomorphism (up to a Z2 factor) of SO (3) for 
the transformation function (p - 1 ) : 

p-l: g = e4>L3e()L2l?L3 ESO(3) 

[
e4>T3eIh2eXT3 0] 

~ 0 1 ESU(2) CSU(3), (Al) 

where ¢, fJ, and X are the rotation angles, {L j } are the gener
ators of SO(3), and {'Ti =oJ2i} are the generators of 
SU (2). Let us mention that the isomorphism of SO (3) onto 
an SOC 3) subgroup ofSU (3) implies a zero invariant spinor 
field and that the trivial homomorphism [A. (Go) = {e}] 
permits only a pure (zero curvature) invariant Yang-Mills 
field. [As for the other homomorphisms A., they can not be 
extended to global homomorphisms (p -1) including the ori
gin, and we ignore them.] 

The isotropy condition for the gauge field (2.4) is expli
citly 

for every goEGo• Its solution at the isotropy 
Xo = (0,0,0,z#0) is given in matrix form by 

o 
o ' 

(A2) 

point 

[@(xo)lp·~ [-~ ~ f ~ ~ ~ ~ E] 
F (A3) 

where A, ... ,F are constants. Inserting this expression in the 
invariance condition (2.3) and letting the parametersA, ... ,F 
vary smoothly (C~ ) on the stratum, we obtain the most 
general SOC 3) invariant SU (3) gauge field (for A.): 

wI" (x) = 01"0 (CXiA.; + EA. 8) 

+ 0l-'i [AA.; + (D -A)(xixi/r)A. j 

- Beijk(xi /r) A. Ie + FxiA. 8 ], (A4) 

where A, ... ,F are functions of rand t, and A. ~ =A.a /2i (i,j, 
k = 1,2,3). 

For the spinor field, the isotropy condition (2.2) reads 

'I1(xo) = [D(1/2,O)(HoJ(xo»)] ®AdA.(go)'I1(xo), (A5) 
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where IIJE~xS is a Dirac spinor field. At the isotropy point 
Xo = (0,0,0, z), the solution to (A4) has the form 

P i{3 p' -i{3' 

[a] [- ia] [a'] [ia'] 
lIJ(xo)= ~ A~+ _~ y;+ ~ y~+ ~ A;, 

(A6) 

where a, ... ,1S and a' , ... ,IS' are constants. Imposing the Major
ana constraint requires that 

a = -IS*, P = y*, a' = -IS'*, p' = r'*. (A7) 

We determine the SO(3) invariant Majorana spinor field 
with values in the gauge algebra su (3) by substituting (A6) 
and (A7) in the invariance condition (2.1) and by allowing 
a,p, a', andp' to depend smoothly on the parameters r and t 
of the orbits. For simplicity, we write 

. [erf>TJE'h2 O2 ] 
IIJMaJ (t, r, e, t/J) = O

2 
et/>T

J
efh2 

® Ad(erf>..t'e9..t i )IIJMaj (t,r), (AS) 

where IIJMaj (t,r) stands for the spinor (A6) with the restric
tions (A 7). Let us point out that the SO ( 3) invariant spinor 
IIJMo,i (t, r, e, t/J) belongs to the subspace ofsu(3) spanned by 
{A4 , As, A6' A7}' and that the SO(3) invariant gauge field 
(A3) takes values in the orthogonal subspace (with respect 
to the Killing form) generated by {A 1> A2, A3, As}. From this 
fact, it is easily seen by introducing the invariant fields (A3) 
and (AS) in the supersymmetry transformations (4.2) and 
(4.3) that no supersymmetry is left. 
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However, as mentioned in Sec. IV, the compatibility 
conditions can be weakened by demanding instead a residual 
supersymmetry up to a gauge transformation. But even in 
that case, the conditions (4.1) and (4.2) are still too strin
gent. The relation (4.21) for XI' (xo, if) is equivalent to the 
isotropy condition (A2) for wI' (xo), and therefore the solu
tion XI' has the form (A3). except that the parameters can 
depend on the Majorana spinor if. It follows that the expres
sion (4.23) cannot be satisfied even if we add a gauge trans
formation since Ad h (xo.if) is an automorphism of the 
gauge algebra. 
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It is shown that in an algebraically special space-time that admits a congru~nce of null strings, 
the Yang-Mills equations with sources reduce to a pair of nonlinear first-order differential 
equations for two matrices, provided that the gauge field is aligned with the congruence. In the 
case where the current is tangent to the null strings, the gauge field is determined by a matrix 
potential that has to satisfy a second-order differential equation with quadratic nonlinearities. 
As an example of this case, the Yang-Mills-Weyl equations are reduced, assuming that the 
multiplet ofWeyl neutrino fields are also aligned with the congruence, and a reduced form of 
the Einstein-Yang-Mills-Weyl equations is also given. 

I. INTRODUCTION 

In a previous paperl it was shown that, for an arbitrary 
gauge group, the source-free Yang-Mills equations reduce 
to a single nonlinear second-order differential equation for a 
matrix potential, provided that the field strength vanishes 
along a family of totally null two-dimensional surfaces on 
which the conformal curvature is zero. This restriction, 
which is the key in the process of integration of the equa
tions, concerns the gauge field as well as the space-time. The 
latter, owing to the assumption that its conformal curvature 
vanishes on totally null two-dimensional subspaces, is alge
braically special. The fact that these subspaces are tangent to 
a family, or congruence, of surfaces constitutes a further re
striction. 

The existence of a congruence of two-dimensional, to
tally null, geodesic surfaces ("null strings"), suitably corre
lated with the curvature of (the complex extension of) the 
space-time, is an essential ingredient in the treatment fol
lowed in the study of the self-dual gauge fields as well as in 
certain approaches used to obtain algebraically special solu
tions of Einstein's equations or of the equations for other 
fields in such spaces (see, e.g., Ref. 1 and the references cited 
therein, see also Ref. 2). 

In the present paper the Yang-Mills equations with 
sources are reduced, with the restriction on the field strength 
mentioned above. In the more general case we show that the 
gauge field is expressed in terms of two matrices that must 
satisfy one pair of nonlinear first-order differential equa
tions. In the special case where the source of the field is also 
aligned with the congruence of null strings, the field is given 
in terms of a single matrix potential that obeys a nonlinear 
second-order differential equation. As an example of this 
special case, the simultaneous reduction of the equations for 
a gauge field coupled to a multiplet of spino! massless fields 
(Weyl neutrino fields) is given. Finally, we show how one 
can take into account the interaction of these fields with the 
gravitational field, by reducing the coupled Einstein-Y ang
Mills-Weyl equations. 

II. PRELIMINARIES 

At a point of (the complex extension of) the space-time, 
each totally null two-dimensional subspace is determined by 
a one-index spinor, (,4 or IA (depending on whether the bi
vector corresponding to the subspace is self-dual or anti-self
dual). The subspaces defined by a spinor field, e.g., lA' are 
tangent to a family of two-dimensional surfaces provided 
that 

IAlBVCAhl = O. 

If IA satisfies the additional condition 

/AlB/i::CABeD = 0, 

(2.1 ) 

(2.2) 

where C Aili::D denotes the spinor components of the anti-self
dual part of the conformal curvature (i.e., the conformal 
curvature restricted to the subspaces defined by /A vanish
es), then the metric of the space-time can be written as3

-
5 

g = 2¢-2 dq"® (dpli + QIIB dqB), (2.3) 
s 

where q" and pA are (complex) coordinate functions, t/J is a 
function that satisfies the equation 

(2.4) 

and the functions QIIB are such that QIIB = QBII . The tangent 
vectors 

alii =..Ji .!.....=...Ji all' 
apA 

alii = F2¢2( a~ + QIIB a B )=.F2¢2DII (2.5) 

form a null tetrad (with allil ·aCD = - 2EIIC€ilD)' (The 
spinor indices are raised and lowered according to 
rP II = € liB tf/', tf/' = ~BrP II , and similarly for dotted indices.) 
The differential operators defined in (2.5) satisfy the com
mutation relations 

allall = 0, (2.6a) 
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aADB =DBa A+ (aAQBC)a c, 

DADA = (DAQAB)a B. 

(2.6b) 

(2.6c) 

III. REDUCTION OF THE YANG-MILLS EQUATIONS 

The Yang-Mills equations with sources, written in 
spinor notation, are 

VARFAB + [A AR,FAB ] =jBR' (3.la) 

V R AFAil + [AR A ,FAil] = jRil' 

with 

(3.lb) 

FAB = V(ARAB)R +A(ARAB)R' (3.2a) 

FAil =VR(AA1R1il) +AR(AA1R1il)' (3.2b) 

(Round brackets denote symmetrization on the indices en
closed. The indices between bars are excluded from the sym
metrization.) Matrices FAB and FAil are matrices that repre
sent the spinor components of the self-dual and the 
anti-self-dual parts of the field strength, respectively. Here, 
FAB = FBA andFAil = FilA·AAil =A(aAil ), whereA denotes 
the matrix-valued potential one-form of the gauge field, VAil 
is the covariant derivative with respect to the Levi-Civita 
connection along a Ail, and jAil denotes the spinor compo
nents of the matrix-valued current, which is produced by a 
matter field coupled to the gauge field. If the gauge group 
consists of unitary matrices then, for a real tangent vector v, 
A ( v) is skew Hermitian, therefore if the tetrad a Ail satisfies 
aAil =aBA,then (AAil)t= -ABA' (FAB)t= -FAil,and 
(jAil) t = - j BA' where t denotes the Hermitian adjoint. 

In the forthcoming we will reduce Eqs. (3.1) assuming 
that the space-time admits a nontrivial solution, lA' of (2.1 ) 
and (2.2) and that the field strength satisfies the alignment 
condition 

(3.3 ) 

With these assumptions, the metric of the space-time is given 
by (2.3), and with respect to the basis (2.5), condition (3.3) 
amounts to Fi i = O. Then, expressing all the components 
with respect to the tetrad (2.5), from Eq. (3.2b) it follows 
that 1 

(3.4) 

where M is a nonsingular matrix. In other words, the condi
tion Fii = 0 means that the curvature of the gauge field, 
represented by the field strength, restricted to the null 
strings, vanishes. Since ARi = A (aRi ) and aRi are tangent 
to the null strings, the matrices ARi determine the parallel 
transport (in the "internal space") along the directions tan
gent to the null strings, therefore, there exists a guage in 
which ARi is equal to zero. The matrix M represents the 
transformation to the gauge in which ARi vanishes. How
ever, the fact that the tangent directions to the null strings 
cannot be all real implies that M does not necessarily belong 
to the gauge group. 

Using (3.4) and the connection coefficients4
•
5 for the 

tetrad (2.5), one finds that the Yang-Mills equations (3.1) 
are given explicitly by 

,fWA(Mt/J-2FABM-I) = Mt/J-7Bi M -I, (3.5a) 
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,fi{DA(Mt/J-2FABM-I) - (aBQAR)Mt/J-2FARM-I} 

+ [M(t/J- 2AAi -,f2M- 1D AM)M- 1, 

Mt/J- 2FABM- 1] =Mt/J-~BiM-I, 

,fwR (Mt/J- 2FjiM- 1) = Mt/J-7Ri M - 1, 

,fwR (Mt/J-4FiiM - 1) - ,f2DR (Mt/J- 2FiiM - 1) 

- [M(t/J- 2ARi -,f2M- 1DRM)M- 1, 

Mt/J- 2FjiM- 1] =Mt/J-~RiM-I, 

with 

Mt/J- 2FABM- 1 

(3.5b) 

(3.6a) 

(3.6b) 

=,fi a(A{M(t/J- 2AB)i - ,fiM-1DB)M)M-1}, (3.7) 

2Mt/J-2Fii M- 1 

=,fia R{M(t/J- 2ARi -,fiM-1DRM)M- 1}, (3.Sa) 

Mt/J-4FiiM- 1 

= ,fiD R{M(t/J- 2ARi - ,f2M- 1DRM)M- 1} 

+M(t/J-2A R
i -,f2M- 1D RM) 

X (t/J- 2ARi - ,f2M-1DRM)M- 1. (3.Sb) 

The integrability condition ofEq. (3.6a) is obtained by 
applying a R on both sides of the equation; this gives [see 
(2.6a)] aR(Mt/J-7RiM -I) = O. Therefore, under the pres
ent assumptions, the source of the gauge field must be such 
that, locally, 

(3.9) 

where A is a matrix made out of the matter field coupled to 
the gauge field. The matrix A is gauge invariant and confor
mal invariant. 

From the Yang-Mills equations (3.1) it follows that the 
current is "conserved" in the sense that 

VAiljAil + [A Ail,jAil] = o. 

Using (3.4), this equation amounts to 

DA( t/J-7Ai) - (as QSA)t/J-2jAi 

+ (l/,fi) [t/J- 2A Ai ,t/J-7Ai ] 

- M -I aA(Mt/J-~AiM -I)M = O. 

Then, substituting (3.9) and using the commutation rela
tions (2.6), one finds 

aADAA- [M(l/,fi)t/J-2AAi -M-1DAM)M-I,aAA] 

+ (l/2,fi)aA(Mt/J-~AiM -I) = O. (3.10) 

By substituting Eq. (3.9) into (3.6a) it follows that 
Mt/J- 2FjiM -I = 2(A + E), where E is a matrix that de-
pends on rt only. If we replace A + E by A, then the expres
sion forjRi is left unchanged [see Eq. (3.9)] and 

Mt/J- 2Fii M- 1 = 2A. (3.11) 

UsingEqs. (3.Sa) and (3.11), Eq. (3.10) can be rewritten as 

aA{DAA + [M(l/,fi)t/J-2AAi -M-1DAM)M-I,A] 

+ (l/2,fi)Mt/J-~AiM-I}=O, (3.12) 

which implies the existence of a matrix E such that 
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Mt/J-~AiM-I = 2-/2{ -DAA - [M(V-/2)t/J- 2AAi 

- M-1DAM)M-I,A] + aAE}. (3.13) 

The matrix E is also a gauge- and conformal-invariant quan
tity made out of the field that acts as a source of the gauge 
field (see Sec. IV). 

We shall now introduce a pair of matrices CA such that 

aAcA = 2A, (3.14) 

then from (3.8a) and (3.11) itfollowsthat,locally, 

M(t/J- 2ARi - -/2M- 1DRM)M -I = -/2(CR + aRH), 

where H is some matrix. By replacing C A + a A H by C A' we 
still have aAcA = 2A and 

ARi = .,{2tfJ2{M- 1DRM +M-1CRM}. (3.15) 

Substituting (3.11 ), (3.13), and (3.15) into Eq. (3.6b) 
we get aR (Mt/J-4FiiM-1) = WRE, hence Mt/J-4FiiM- 1 

= 2(E + 15), where 15 is a matrix which depends ont/ only. 
Ifwe now replace E + 15 by E, then the expression forjAi is 
unaltered [seeEq. (3.13)] and 

Mt/J-4FiiM-I = 2E. (3.16) 

On the other hand, from Eqs. (3.8b) and (3.15) we have 
Mt/J-4FiiM-I=2(DRCR +CRCR). Therefore, the ma
trices CA , defined by Eq. (3.14), must fulfill the condition 

( 3.17) 

The components FAB can now be obtained by substitut
ing (3.15) into (3.7), which yields 

Mt/J-2FABM-I=2a(ACB)' (3.18) 

Then the remaining Yang-Mills equations [Eqs. (3.5)] are 
satisfied as a consequence of (3.9), (3.13)-(3.15), and 
(3.17). 

In the case where the current is also aligned with the 
congruence of null strings, in the sense that the current is 
tangent to those surfaces, with respect to the tetrad (2.5) one 
hasjAi = O. Then, from Eq. (3.9), one finds that A = E(t/) 
and from (3.14) itfollowsthatCA = -EPA +aAH,which 
substituted into Eq. (3.17) leads to 

DAaAH + (aAH - E~)(aAH - EPA) + ~ ~ = E. 
at/ 

(3.19) 
In this case, Eqs. (3.15) and (3.18) take the form 

ARi = .,{2tfJ2{M -IDRM + M -I(aRH - EPR )M}, (3.20a) 

FAB = 2tfJ2M -I(aA aBH)M. (3.20b) 

Finally, when the gauge field is source-free, from Eqs. 
(3.13) and (3.20a) we get 

E =~ :; + [H,E] + 15. 

Hence Eq. (3.19) reduces to 

DAaAH+aAHaAH+ [~aAH-H,E] =15, (3.21) 

which was previously given in Ref. 1. 

IV. REDUCTION OF THE YANG-MILLS-WEYL 
EQUATIONS 

The components of a multiplet of Weyl neutrino fields 
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t/JA i, where A = 1,2 is a spinor index and i = 1,2, ... ,n labels 
the components with respect to a basis in the "internal 
space," interacting with a gauge field obey the equations 

VAiJt/J/ + A AiJJt/J/ = 0, (4.1) 

where A AiJ J denotes the elements of the matrix A AiJ, or, in 
matrix form regarding t/J A as a column, 

VAiJt/JA +A AiJt/JA = O. (4.2) 

The "adjoint" components of the multiplet, t/J;Ii' fulfill 

VAiJt/JiJ - t/JiJA AiJ = 0, (4.3) 

where t/JiJ is the row t/JiJ = (t/JiJ 1 ,···,t/JiJn ). 
We shall impose the alignment conditions lAt/JA = 0, 

and that for the gauge field given in (3.3), with lA being a 
solution of Eqs. (2.1) and (2.2). Expressing again the com
ponents with respect to the basis (2.5), condition lAt/JA = 0 
amounts to t/Ji = O. Then, using Eq. (3.4) and the connec
tion coefficients4

•
s for the tetrad (2.5), from Eq. (4.3) one 

gets aA(t/J-s/2t/JiM-1) = 0, which implies that 

t/Ji. = -/2t/Js/2;M, (4.4) 

where; = (;l>"',;n) depends only on t/. 
Similarly, from Eq. (4.2), with B = i, it follows that 

a A (Mt/J -3/2t/J A ) = O. Therefore, there exists locally a col
umn 'T/ such that 

t/JA =t/J312M- 1aA'T/. (4.5) 

And from (4.2) withB = i, using (3.15) one finds that 
D A(t/J-3/2t/JA) - ~ ac QCAt/J-3/2t/JA 

+ (M -IDAM + M -ICAM)t/J-3/2t/JA = O. 

Hence, substituting the expression given in (4.5) one has 

DA aA'T/ - ~ (acQCA)aA'T/ + C A aA'T/ = O. (4.6) 

The matrix-valued current produced by a multiplet of 
Weyl neutrino fields is given by j AiJm I = ikt/J /t/JiJm , where k is 
a (real) coupling constant, or in abbreviated form, 
jAiJ = ikt/JA ® t/JiJ· The coupling constant k can be deter
mined, e.g., from the Lagrangian density for the composite 
system. In this way the relative normalization of the energy
momentum tensors ofthese fields is also fixed (see Sec. V). 
In the present case, from (4.4) and (4.5) we have 

jAi = 0, 
jAi. =-/2ikt/J4M- 1(aA'T/®;)M. 

(4.7) 

Thus we are in the special case considered in the previous 
section, where A = E(t/). Then, using (3.20a), a compari
son of (3.13) with (4.7) leads to 

E =~ ~.: + [H,E] +15 +~ik'T/®;' af{ 2 
where 15 =t5(t/),andfrom Eq. (3.19) we get 

DAaAH+aAHaAH+ [~aAH-H,E] =t5+!ik'T/®;. 
(4.8) 

The fields are given in Eqs. (3.4), (3.20), and [see Eqs. 
(3.11) and (3.16)] 

Fii = 2t/J2M- 1EM, 

Fii =2tfJ4M-I{~ :;+ [H,E] +15+ ~ ik'T/®;}. (4.9) 
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Finally,substitutingCA = -EPA +BAH into (4.6) we 
get 

DABA'TJ -! (BcQCA)BA'TJ + (BAH - E~)BA'TJ = O. (4.10) 

The pair of coupled equations (4.8) and (4.10) for the un
knowns Hand 'TJ, with E, 8, and; being arbitrary functions of 
rt only, is equivalent, under the imposed restrictions, to the 
full system of the coupled Yang-Mills-Weyl equations. 
Here we are not considering the gravitational effects pro
duced by these fields, i.e., they are taken as test fields on a 
background space-time that admits a congruence of null 
strings. In Sec. V we shall show how the interaction with the 
gravitational field can be included. 

v. REDUCTION OF THE EINSTEIN-YANG-MILLS-WEYL 
EQUATIONS 

We shall take the energy-momentum tensor of the mul
tiplet ofWeyl neutrino fields as given by (cf., Ref. IV) 

TABCiJ 
= (i1i/16){(VBiJtPc - tPCABiJ)tPA 

+ (VACtPiJ - tPiJAAC)tPB 

- tPC<V BiJtP A + ABiJtP A) 

- tPiJ(VACtPB +AACtPB)}' 

and that of the gauge field as 

TABCiJ = - (lhr)Tr FABFciJ , 

(5.1) 

(5.2) 

where Tr denotes the trace. Both expressions are gauge
invariant. This choice amounts to taking the coupling con
stant k introduced in Sec. IV as k = 1rli/4. By substituting 
the expressions given by Eqs. (3.4), (3.20), (4.4), (4.5), 
and (4.9) one finds that the components of the total energy
momentum tensor, with respect to the tetrad (2.5), are 

TABii = 0, 

TABii = (1!81T)~4aA aBTo, 

TABii = - (1!81T)~6 a(A TB)O 

where 

To = - 1Tili{;'TJ - 32 Tr EH, (5.3a) 

TA = -21Tili{(:~)'TJ-;DA'TJ+2;E'TJPA -2;(aAH)'TJ} 

+ 32 Tr{(pB :; + [H,E] +8)aAH -H :;}. 

(5.3b) 

We shall now outline the derivation of a reduced form of 
the equations for the system considered in Sec. IV coupled 
with the gravitational field, using the results given in Ref. 4. 

With the alignment conditions (4tP A = 0 and ( 3.3), 
where lA defines a congruence of null strings [i.e., lA satisfies 
Eq. (2.1)], and from the Einstein equations, it follows that 
lCliJCABCiJ = 0, where the CABCiJ arethespinorcomponents 
of the traceless part of the Ricci tensor, then Eq. (2.2) is 
automatically satisfied.6 

Condition TABi i = 0 implies ~ = JA~ + K, where JA 
and K depend on rt only.3-5 Choosing a coordinate system 
rt, ~ such that when JA = 0 (case I), K is equal to 1, and in 
the case where JA #0 (case II), JA and K are constant, one 
finds that4 •5 

I: QAB = -a(ABB) -jL(APB)O (5.4) 

where LA = LA (rjl) and BA denotes the most general solu
tion of 

(5.5) 

and 

II: QAB = - ~3 a(ABB) + f.l~3KAKB' (5.6) 

where f.l = f.l (rt), K A is a pair of constants such that 
K A JA = 1 and B A denotes the most general solution of 
(5.5). Then, using Eqs. (3.33) of Ref. 4 and Eqs. (5.3) 
above, one finds that the functions B A' which essentially de
termine the metric, must satisfy the further condition 

{ 
C 1 aB ca L cB 1 L B 2 1 aLc B c N B 32 T ( B aE ~)H} I: aA D Bc-- B (BBc)- c+-( BP) ----pP - BP - rp -+u 

2 18 6 arjl aqB 

= 41Tili{;{DA'TJ -! LA'TJ + (aAH - EPA )'TJ} + 64 TrE{DAH -LAH +! [aAH,H] -! 8PA}' (5.7) 

where NA = NA (rjl), and 

II: aA{~DCBc -!~4aBBca(BBc) + (~JCBC)2+f.l~3KcBc 

+ ~ KBpB [KDpDJ C - (~+ K)K C] :;c - NBPB - 32 Tr(pB :; + 8)H} 

= 41Tili{;{DA'TJ + JB a(A~2BB) 'TJ + ~f.l~2KA'TJ + (aAH - EPA )'TJ} 

+ 64 TrE{DAH + 2JB a(A~2BB)H + 3f.l~2KAH +! [aAH,H] -! 8PA} + 3f.l~2BA' (5.8) 

Consistency of Eqs. (5.7) and (5.8) requires that aA
, 

when applied to the right-hand side of these equations, yields 
zero. In fact, using Eqs. (4.8) and (4.10) it can be verified 
that this consistency condition is fulfilled. Hence, the right
hand side of (5.7) and (5.8) must be, locally, of the form 
a A S, where S is a function. If one can write Eqs. (4.8) and 
( 4.10) in the form a A R A = 0 (as a "continuity equation"), 
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~hich implies the existence of X (a matrix or a column, re
spectively) such that RA = aAX, then the function S men
tioned above can be written in terms of X and a A can be 
eliminated from both sides ofEqs. (5.7) and (5.8). Thus, B A 

would be determined by a first-order equation and, since the 
RA 's would involve only the first derivatives of H or 'TJ, Eqs. 
(4.8) and (4.10), written as RA = aAX, are also of first 

G. F. Torres del Castillo 943 



                                                                                                                                    

order. Therefore, finding such potentials X would allow us, 
introducing the X's as new unknowns, to reduce the differen
tial order of Eqs. (4.8), (4.10), and (5.7) or (5.8) by one 
unit. Unfortunately, the fact that Hand 1] are matrices com
plicates the determination of the X's. However, they can be 
readily obtained when the gauge field is absent4 and, in case 
I, when the Weyl field is absent.' 

VI. FINAL REMARKS 

In order to obtain real fields, the solutions of Eqs. 
(3.17), (4.6), (5.7), and (5.8) must satisfy further condi
tions corresponding to the assumed alignments of the Yang
Mills and Weyl fields and to the algebraic degeneracy of the 
curvature of the space-time, e.g., for a real gauge field, the 
self-dual part of the field strength given by Eq. (3.18) must 
satisfy a condition of the form /A/BFAB = 0, which is an ad
ditional constraint on CA and where /A must satisfy equa
tions analogous to (2.1) and (2.2). The necessity of consid
ering these further conditions is a consequence of the use of 
complex coordinates and complex tetrads in the derivation 
followed here. Nevertheless, as compared with the original 
equations, taking into account their nonlinearity, differen-
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tial order, and the number of unknowns, the results present
ed here represent a considerable simplification. An example 
of the usefulness of this approach is provided by the study of 
linear perturbations of source-free gauge fields given in Ref. 
7, where one is able to eliminate all reference to complex 
coordinates in the final covariant expressions. 
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Tools that have been developed for the extension ofthe Sterman-Weinberg formula in two
loop order are presented. They are the essential ingredients for any perturbative two-loop 
calculation in a massless theory. Introducing dimensional regularization, this paper deals with 
poles up to fourth order in the dimensional parameters. The virtual two-loop integrations as 
well as real ones over phase space are studied. 

I. INTRODUCTION 

In this work we evaluate various integrals that appeared 
in the course of the calculation of e + e - jet cross sections to 
order a;. This calculation 1 was done in the framework of 
massless perturbative QCD. Dimensional regularization has 
been used throughout for the regularization of the ultravio
let and the infrared divergencies. (Ultraviolet and infrared 
singularities can in principle be disentangled by examining 
the low energy and the high energy behavior of the integrals. 
We do not distinguish them in the following, because the 
ultraviolet singularities are removed by counterterms which 
are known a priori.) In the course of the calculation of the 
two jet cross sections, 1 which is the one most involved, poles 
of up to fourth order in the dimensional parameter appeared. 
[If n is the dimension we define £ = (4 - n) /2.] Thus this is 
a true two-loop calculation because one-loop results contain 
at most poles £ - 2. So this work extends earlier papers on the 
techniques2 of dimensionally regularized massless theories, 
which all stop at the next to leading order level. We hope that 
the techniques we present will be of help in other two-loop 
QCD calculations for ep and pp processes where at the mo
ment the £-2 level is arrived at.3 

Some of the methods are described only for the scalar 
integrals. However, they can all be extended to the case 
where numerators (coming from the Dirac traces) are in
volved. We will present also results for this case, e.g., Eq. 
(33). The calculation of the total hadronic coss section in 
e+ e- annihilation can be reduced to the calculation of the 
photon two-point function via the optical theorem. Though 
it is a genuine two-loop problem fortunately only poles up to 
£-2 appeared here and could be handled with the help of the 
Gegenbauer technique.4 For completeness we will review 
some features of this technique in the beginning of Sec. II. 
However, for the three-, four-, and five-point functions with 
one particle off shell, which are needed for jet cross sections, 
this method is of no advantage as compared to the usual 
technique of introducing Feynman parameters.5 Then we 
give an elegant way for calculating the ladder diagram [Fig. 
2(a)] and use Feynman parameters to calculate the crossed 
diagram [Fig. 2(b)]. In Sec. III we discuss box diagrams, 
where a one-loop virtual integration has to be done and also 
one real gluon has to be integrated out. This means that one 
integrates over those parts of phase space where the gluon is 
infrared or collinear with one of the other partons. This adds 
poles in £ to the poles coming from the virtual integrations. 

Sections IV and V give two prescriptions how to handle 

the tree-level diagrams, where a two-gluon bremsstrahlung 
has to be integrated out. Again poles of up to fourth order in 
£ emerge. 

In physical applications 1 these cancel against the in
frared singularities from the virtual integrations. 

II. INTEGRALS FOR VIRTUAL TWO-LOOP DIAGRAMS 

The Gegenbauer expansion technique in momentum 
space6 proves useful for diagrams with only two external 
legs, e.g., for the vacuum polarization of the photon.4 In 
Refs. 4 and 7 extensive use is made of it. Here we describe 
some of its features for the sake of completeness. 

The Gegenbauer polynomials Cf, j = 0,1, ... , A. > - ~ 
form a complete set of functions in the interval ( - 1,1) 
(Ref. 8). They are a generalization of the Legendre polyno
mials (A. = !) and the Chebyshev polynomials (A. = 1). The 
method consists in expanding propagators into Gegenbauer 
polynomials [cf. Eq. (2) of Ref. 6]. Then one does the angu
lar integrations with the help of the orthogonality relation 
[Eq. (A 1) of Ref. 7] and is left with radial integrations in 
the form of powers of the momenta. In simple cases such as 
the example in Ref. 6 this leads to infinite series which can be 
evaluated with the help of standard summation formulas.9 

The method works for integrals that depend only on one 
momentum, i.e., self-energy graphs. They must fulfill an ad
ditional property, namely there must exist a parametrization 
of integration momenta in such a way that not more than 
two Gegenbauer polynomials appear within one angular in
tegration. For integrals of products of three Gegenbauer 
polynomials no simple closed form exists. 

In the case of the vacuum polarization of the photon in 
order a; (Ref. 4) all graphs are calculable with the Gegen
bauer technique with the exception of the graph of Fig. 1, 
which is "irreducible." 

Next we consider the two-parton contributions of the 
two-jet cross section (Fig. 2). These diagrams can also be 
thought to define the (singular) electromagnetic form factor 
of massless quarks. 10 After the Dirac traces are done the dot 
products that emerge are transformed into sums of squares 
of momenta in such a way that as many of them as possible 
cancel against denominator factors, e.g., 

kp = !k2 - !(k - p)2, (1) 

for p2 = O. In general one is left with relatively complicated 
scalar integrals, which we will calculate in the following, and 
simple tensorial integrals. For the tensorial as well as for 
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Ylq,-®-y 
FIG. 1. The contribution to the vacuum q I p I 
polarization of the photon in O(a;). ~ 1 -« -« 
The symbols in brackets always denote ylql 9 
the momenta of the particles. 

la) (el 

-:<I some of the scalar integrals [Figs. 2(c)-2(e)] the strategy is 
to introduce Feynman parameters with the help of 

1 (I dx 
FIG. 2. Two parton contributions to the two-jet cross section in O(a;). A 
shaded region always means a one-loop insertion. 

k2(k_p)2 = Jo [(k_pX)2]2 (2) 

which holds for p2 = 0, i.e., one tries to preserve the massless 
structure of the theory. In general, one ends up with stan
dard integrals given in Appendix A. 

Figures 2(a) and 2(b) cannot be met with this general 
strategy. However. planar diagrams like Fig. 2(a) can be 

solved with the help of "partial integration." This method 
has been described in Ref. 11. Figure 2(a) can be reduced to 
the scalar integral 

I 

f dnkdnl 
L -

s - k2[2(l + PI)2(1- pz)2(k + 1+ pl)2(k + /- P2)2 
(3) 

and some tensorial integrals which can be calculated by using the standard strategy (2). [The integrations are done in 
Euclidean space. Continuation to Minkowski space is done in the result of the integration in such a way that the propagators 
are the usual causal propagators (k 2 + ip) -I.] To calculate L. by the method of Ref. 11 we need some notation. Let-H
mean an additional factor of k 2 in the numerator and ........ an additional factor of k 2 in the denominator. Define 

"1 ~ \ + k2 =2k1(k1 + k 2) 

= (k l + k2)2 + k i - q 

Because of the translational invariance of the integral one has the identity 

f dnkdn/~ (k+I-P2)p. =0. 
akp. k 2/2(1 + PI )2(1- P2)2(k + 1 + PI)2(k + 1-P2)2 

After differentiation one receives 

0- (n - 2) -«[ 
-(n-4)-<11 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

The first integral on the right-hand side is very simple and can be done with the standard formulas of Appendix A. The second 
integral can be simplified in the same way as the original one: 

0=(n-4) -« -2 ~ +-<t. (10) 

The result is 
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(11) 

With the help of Appendix A one gets 

L =1T4 - 2E(q2)-2- 2Er(1_e)r(1 +e)r(1 +2E) {_I_+.h.+ 11~3 +~,.}. 
s , ~ ~ 2E 4~4 

(12) 

Using Feynman parameters Gonsalves lO has also arrived at this result. However, our method is much more elegant. The 
momentum dependence of Ls could have been derived from a simple dimensional analysis. The appearance of 

(13) 

in connection with poles E' - 4 is a characteristic feature of the result (12). 
The crossed diagram [Fig. 2 (b) ] cannot be done with this method because it is not planar. [To see this try to apply (8) to 

it!] The scalar crossed integral 

f d"kd"/ 
Ks = k 2/2 / 2 k / 2 k / 2 k 2 ( -PI) ( - ) ( - - P2) ( -PI - P2) 

(14) 

can, however, be calculated with the help of Feynman parameters, 

i
l il f d"kd"/ Ks = dx dy 2 4 4 2 • 

o 0 k (I-PIX) (k-l-p2Y) (k-PI-P2) 
(15) 

Any further Feynman parameter is accompanied by a "mass term" in the denominator. One gets 

i l il i l i l f d "k K s =r-E(q2)-I-E(3+e)(2+e) dx dy dz duu l +E(1-u) 2 4 ' 
o 0 0 0 (k + C) +E 

(16) 

C=z(1-Z)q2(1-U) +u(1-u)(qZ-XPI-YP2)2. (17) 

The k integration can be done with Eq. (AI). 
The y integration is then straightforward: 

Ks = _1T4-2E(q2) -2-2E~ r2(1- E)r(1 + 2E) r'du uE(1 _ u) -1-2E 
e r(1- 2E) Jo 

X dx __ Z_z-I-2E(1_Z)-1-2E l-u~ _ l_u x - z . i
l il d {( Z )-1-2E ( )-I-2E} 

o oz-x Z l-z 
(18) 

The divergence for X = Z is an artifact of the y integration and disappears in the difference. The u integration leads to 
hypergeometric functions. If one wants their series representation to converge one has to distinguish the regions x < Z and 
x>z. Then 

Ks = 1T4-2E(q2) -2- 2Er(1 - e)r(1 + 2E)r(1 + e{j'e-2, 

!= 1'dZ fdxz-I-2E(1-Z)-1-2EF(I- ;)(Z-X)-I 

+ l' dz f dXx- I - 2E(1-Z)-I-2EG (I- :) (Z-X)-I 

- r dz r'dXZ-I-2E(1_Z)-1-2EF(I_I-X)(Z_X)-1 
h ! l-z 

- r'dz (I dx (1_X)-1-2EZ-I-2EG(I_ l-z)(Z_X)-I, 
Jo Jz I-x 

with 

F(a) =2FI(1 +2E,1 +e,l-e,a), 

G(a) = ~I( 1 + 2E, - 2E,1 - e,a). 

We change from x to 1 - x and from z to 1 - z in the last two terms of! and get 
A 

1=2(10+ / 1 +/2), 

10,= l' dz f dxZ- I - 2E [(1_Z)-1-2E_ (I-X)-I-2E](Z-X)-1 

=r- l (1 +2E) L r(k+ 1 + 2E)(I/I(k+ 1) -1/1(1») 
o k!(k-2E) 
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is the contribution from the first term in the series expansion 
of the hypergeometric functions. Here II and 12 contain the 
integration of all other terms. Because of absolute conver
gence of the hypergeometric series one can exchange sum
mation and integration. The sums that finally appear can be 
done with the help of standard formulas. 9 The final result is 

Ks = 1T4 - 2E(q2) - 2 - 2er(l - e)r(l + e)r(l + 2e) 

x{~- 9;2 _ 25;3 +~;4}' 
e4 e2 e 2 

(25) 

From completeness we give also the results for the scalar 
integrals of Figs. 2(c)-2(e), 

f dnkdn[ 

k 2(k - PI )4(k - PI - p2)2/2(k - PI _/)2 

= Vo ( - 4!2 - 3 + ~ ;2)' (26) 

for 1 = 1,2,3. 
The denominator in Eq. (14) is invariant under the two 

transformations (PI++P2,I++k -I) and (k++PI + P2 - k,1 
++PI -I). Using the second invariance one can derive 

R I =KJ2, 

R3 = - KJ2 + 3R2/2. 

(31) 

(32) 

III. DISCUSSION OF BOX DIAGRAMS 

In Sec. II the "two-loop" calculation consisted in doing 
two virtual integrations. Here we consider diagrams like Fig. 
3, where one loop integration has to be done and one real 
particle (namely the gluon) has to be integrated "out" sub
sequently (i.e., a phase space integration over infrared and 
collinear regions has to be carried out). As an example we 
consider the scalar box integral with three particles on mass 
shell pf = p~ = pi = O. The case with all four particles on 
shell is contained in it. If all incoming and outgoing particles 
are off shell the integral can be done in four dimensions, 

948 

FIG. 3. A typical box dia
gram. 
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(28) 

Here 

Vo = 1T4 - 2E(q2) - 2 - 2er(l - e)r(l + e)r(l + 2e). 

(29) 

In the case of Fig. 2(b) one cannot reduce all the tensor 
structure from the Dirac trace to the scalar integral Ks and 
the standard integrals of Appendix A. In addition one needs 

(30) 

because no infrared singularity exists. (Box integrals are ul
traviolet finite anyhow.) Four-dimensional box integrals are 
calculated in the third paper of Ref. 2. To calculate 

f dnk 

l Box = k 2(k + P2)2(k - P3)2(k - PI - P3)2 
(34) 

we follow the general strategy described in Sec. II. Namely 
we introduce Feynman parameters avoiding mass terms in 
the denominator 

il il f dnk 
l Box = dx dy 4 4' 

o 0 (k+p~) (k-P3-PlY) 

(35) 

After a shift of variables one can use the standard formula 
(A2) for doing the virtual integration. The Feynman pa
rameter integrations lead to hypergeometric functions 

where the Y ij = 2pj pjl q2 are dot products normalized to the 
energy and YI2 + Y23 + YI3 = 1 is energy conservation. The 
e-2 pole is due to the infrared singularity from the virtual 
integration. The q2 dependence could also have been derived 
from a dimensional analysis ofEq. (34). Note also the singu
larity Yi3 IY23 I, which can produce another e-2 pole after the 
integration over phase space. The hypergeometric functions 
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in Eq. (36) have the power series expansion 

00 z} 

:J1(1, -&,I-e,z) = 1-& ,L -.-. (37) 
}=I j-e 

The series in Eq. (37) is the expansion ofa logarithm gener
alized to n = 4 - 2£ dimensions. If expanded in a power se
ries in e we obtain 

00 zi 00 L -. -= -In(l-z) + L e}L1+ 1 (z), (38) 
i=lj-e }=I 

where L" is the generalized Euler dilogarithm 

00 zi 
L,,(z)=,L-' (39) 

i= 1 j" 

For further integration over phase space the expansion (38) 
is not useful, because additional singularities may make the 
inclusion of L" , n > 2, necessary and at the integration boun
daries (39) may not be convergent. 

So we first transform the hypergeometric functions in 
Eq. (36) according to 

:JI(I, - e,1 - e, -!!....) = (_b ) -£E(_a ), (40) 
b a+b a+b 

with E(z) = :JI ( - e, - e,1 - e,z). The hypergeometric 
function E has an everywhere convergent series expansion 

E(z) = 1 + e
2 i r(k-e) z'<, (41) 

r(1-e) k=1 kICk-E) 

I = _2(...2)_2_£~_£r2(1-e)r(1+e) 
Box 'I e2r(1 _ 2£) 

X -1-£ -I-e{(y + )£E( Y12 ) Y\3 Y23 IV'23 Y12 + 
YIV'23 YI2 

- (Y12 + Y23YE( Y12 ) 
Y12 + Y23 

-(Y12+Y\3)eE ( Y12 )}. (42) 
Y12 + Y\3 

One now wants to integrate Eq. (42) over the three-particle 
phase space drawn in Fig. 4 (Ref. 12). One can divide it into 
a "two-jet" region where (42) has singularities and a "three
jet" region where ( 42) is finite. In the finite region 
E(z) = 1 + e2L 2(z) and the integration ofthe L2 term can 
be done in four dimensions. 

The singular region is defined Y\3 <Y or Y23 <yo Equa
tion (42) has no singularity for YI2-0. So this region which 
physically is two-jet can be formally added to the finite three
jet region. 

Herey« 1 is the invariant mass cut defining ajet. 12 1t is 
both an energy and an angle cut. Here {Y13 <Y'Y23 > Y} is the 
collinear region 1113, {Y\3 > Y,}'23 <Y} is the collinear region 
2113, and {Y13 <Y,}'23 <Y} is the infrared region 3-0. Be
cause of the symmetry the two-jet region of three-particle 

Yll~ 

ylh 
y Y23 

FIG. 4. Three-particle phase space for 
e+ e- ..... qqg. It is divided into a two-jet re
gion which contains the singularities and a 
three-jet region free of singularities. 
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phase space can be written as 

f dY13Yii e {2f -)I .. - [} dY23Y2i e(1 - YI3 - Y23) -e. 

(43) 

As long as one neglects contributions of order Y one can 
restrict oneself to theY13 pole in (42). So the two-jet contri
bution from the scalar box integral is 

which can be calculated straightforwardly. The result has an 
&-4 pole with a structure similar to the two-loop virtual re
sults in (12) or (25). In addition one has terms Ink y/e4 

- k, 

k = 0,1,2,3,4, 

B = ~-e( 2) -2-2& r2(1 - e)r(1 + e) 
I q r(1 - 2£) 

X {_1 __ 3t2 _ 2t3 - ~t4 
2£4 2£2 e 8 

+ 4t21ny + 4t3 1ny - 6t2 1n2 Y 
e 

_ 2 In
2 
Y + 4 In

3 
Y _.!! 1n4 Y} . ( 45) 

e2 e 3 

IV. TREE DIAGRAMS 

In the case of a diagram like Fig. 5 one has to do no 
virtual integrations. However, two gluons have to be inte
grated "out" here to calculate its two-jet contribution-the 
three- and four-jet contributions from such diagrams have 
been discussed extensively in the literature. 12-17 In the four
jet case no e singularities appear. In the three-jet case one has 
to deal with e-2 singularities coming from an integration 
measure very similar to (43). 

There exist two topologically distinct two-jet configura
tions here: 

I ~24 
3~ 

+ permutations + infrared configurations. (46) 

Because of the pole structure of the matrix element squared 
only the permutations 1_2 and/or 3++4 are necessary. All 
other configurations which are physically two-jet lead to the 
O(y) contributions. However, because of the appearance of 
terms -y/e they cannot be simply added to the three- or 

FIG. S. A typical tree level diagram in 
O(a;). 
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four-jet contributions; but must in principle be cancelled in
dependently. In Sec. V we describe a method where such 
terms are avoided. That method will also provide us with all 
finite logarithms necessary for the two-:.iet cross section, 
whereas the procedure described here is only sufficient to 

Here Yilk: =Yij + Yjk + Yik, u: =Y231 (Y12 + Y23)' z =Y131 

Y134Y123, and Ne· = 22£l1r(1 - 2£)r-2(1 - e) is the not
malization of the 8' integration. The firstterm in (47) oper
ates on the YI3 Y24 poles of the matrix elements squared. In 
Fig. 6 we show how it appears as part of the total phase 
space. The second term in (47) corresponds to that part of 
four-particle phase space, whereeitherYl34 <yorYz34 <yo To 
visualize this region one should take Fig. 4 with Y 13 replaced 
by YJ34 andY23 replaced by Y234' Because ofthe symmetry of 
the matrix elements squared in 1~2 one can take twice the 
contribution from the region Y134 <Y and has to subtract 
overlap contributions. This is the content of the curly 
bracket in (47). (For an extensive discussion of this see Ref. 
1.) Then the second term of the expression (47) operates on 
the yl34-double poles of the matrix elements squared. These 
double poles have a structure much more complicated than 
any pole structure which appeared so far. We will not write 
down the full expression here but only describe the calcula
tion of two characteristic integrals. These integrals stem 
from poles inYl4 in the matrix element squared, 

lim y 14/Y134 = u( 1 - z) + ZUY24 
YI:W-O 

- 2 cos {1'(u(1 - u)z(1 -Z)Y24)1/2 
(48) 

has a relatively complicated structure (see Appendix B). 

FIG. 6. Four-particle phase space for a fixed value of Y134 > y. Region II is 
the twa-jet region (Yt3 <Y, Yz4 <Y, '134 > y), which is the first part of Eq. 
(47). 
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cancel the singularities _Ink
-

m yle4
-\ k=O,l,2,3, 

m = 0,1,2, k>m. 
We have used the representation orr our-particle phase 

space given in Ref. 14. In the two-jet limit (46) the four
particle phase space reduces to 

We want to calculate 

J;J:= f dyy" E(l_y)f3- lE f dzz-E(l-z)-" 

xiI du u<'l-"(l- uv-eL 
o Ne· 

(49) 

to order e, where 

[ 
d8 ' sin - 2£0 ' 

j-
o ay + b - 2~aby cos 8 I 

(50) 

with a = UZ, b = (1 - u) (1 - z). The 8 ' integration can be 
done 

I -1 ( 1 4aby ) --= (ay+b) 2FI -,l,l-e, 2 • 
No, 2 (ay+b) 

(51) 

The hypergeometric function can be transformed by a "qua
dratic transformation" 18 so that 

liNe' = (s+/2)2"r=l-lE~1( -£,-2e,l-e,LIs+), 

(52) 

where s ± = r + ± r _, r ± = lay ± b I. We can set 
zFI( -e, - 2&,1 - e,s_18+) = 1 because terms of order 
e2s _ Is + give a contribution 0(£) in the full result. The rea
son for that is the s _Is + cancels all singularities which ap
pear (u - l,y -I ) with the exception of the Y 134 singularity, So 
the U,Y, andz integrations are finite. One has an e- 1 from the 
YI34 integration but this pole is removed by the e2 factor. 

Next the z integration is done. One divides the region of 
integration into two regions: ( 1 ) z < rand (2) z> r f r: = vi 
{3, {3: = 1 - u (I - y), v: = 1 - u J. Then one has 

J;J = .r dy y" "'0 - y}f3 2£ 

X f duu6 -"(1-u)'Y- e (M<2 +Mb ), (53) 

where 

13M a = 13 [ ciz z-e(l -z) -"(v - 13z) -I -evlE(l - z)lE 

=r-er(l-£)r( -2&) zFl( -£,I-E,I- 3£,y) 
ro- 3£) 

= [13M b ]'Y .... l - 'Y' (54) 
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Expanding the hypergeometric function in Eq. (54) in pow
ers of e and 1 - r one getsl9 

P(Ma +Mb ) 

= [r(l - e)r( - 2£) + r(e)r( - 2£) ] 
r( 1 - 3e) r( - e) 

(
l-r)-£ r(1-e)r( -e) +O(u e2). 

X + r(1-2£) y 
r (55) 

The terms of order uye2 do not contribute [see the remarks 
after Eq. (52)]. We conclude 

Jr6 _ r(1- e)r( - e) Fr6 
aP - r( 1 _ 2£) laP 

+ [r(1 - e)r( - 2£) + r(e)r( - 2£) ]F~, 
r(l- 3e) r( -e) 

(56) 

where 

F~~ = f dy f dy~-nE(1_y)P-2e 
X u6- M(1 _ u)r- (2 - nlE(1 _ u(1 _ y»)-I 

(57) 

can be calculated by expanding (1 - u (1 - y) )-1 near 1: 

6 r(p + 1 - 2£)r(a + r + 1 - 2£) 00 r(k + a + 1 - ne)r(k + /) + 1 - ne) 
Fl' - L . 

naP - rIa + P + 1 - (n + 2)e) k=ok Ir(k + r + /) + a + 2 - (n + 2)e)(k + a + P + 1 - (n + 2)€) 

For all combinations of a,/3,r,/) that appear in the problem 
the sum in Eq. (57) is convergent. 

As an example we now calculate J I_-I~' We have 

F~ = 10 = 1'(1 - 2£)/4£2r2(1 - 4£), (59) 

FI - I _ r2(1 - 2£)r2( - e) + r2(1 - 2£) 
I - 10 - r 2 (1 - 3e) r( - 3e) 

f r2(k - e) (60) 
X k= I k!r(k + 1 - 3e)(k - 3e) . 

One has 

ktl k Ir(k ::(~ ~e;~k - 3e) 

= f r(k+e) + 0(e2), 
k= I kl(k - 2£)(k - 4£) 

(61) 

and the sum on the right-hand side of (60) can be done with 
(6.6.2) of Ref. 9. In total one gets 

J I - I = _.!.. + 11;2 + 181- + 2!.. I- e + 0(e2). (62) 
- 10 e3 2£ ~3 2 ~4 

An integral closely related to J ~~ is 

K'[$: = f dy~-E(1_y)p-2e 
X f dz z-I-£(1-Z) -E f du u6-£(1- uV- E 

[
dO' - 2,faiiY cos 0 ' 

X 0 NIJ' ay + b - 2,Jaby cos 0' 
(63) 

Because of ,Jaby in the numerator it is less divergent than 
J'[$. One can see this by writing [see (53) ] 

K'[$ = f dy ~-£(1- y)p-2e 

X f du u6- E(1 - uV-E(Na + N b )· (64) 

One finds 
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(58) 

Na +Nb = -2uy(Na +Nb) -2Inr+eln2r 

+ 2£L2 (1 - r) + 0(e2uy). (65) 

We write 

-lnr+€ ln2r+2£L2(1-r) 

= 2[ (1 - r)/(1 - e)] ~I (1,1,2 - e,l - r) 

+ O(e2uy). (66) 

So K '[$ is reduced to J ~6/11 modulo a third type of integral 

L'[$ = t tdydu 
JoJo 1-e 

X ya+ 1-£(1 _ y)P-2eU6+ 1-£(1_ uV- E 

~1(1,1,2 - e,uy/[ 1 - u( 1 - y)]) X , 
1- u(1- y) 

(67) 

which is finite for all combinations of a,/3,r,/) that appear. 
Introducing r instead of u as integration variable we can do 
they integration. This leads to another hypergeometric func
tion. Expanding the hypergeometric functions into series we 
can calculate L '[$ in a standard way. 

Instead of calculating all J'[$ and K '[$ in the 13-system 
( 48) some of the integrals can be done more elegantly in 
other phase-space systems [e.g., (B20)-(B24)]. However, 
the expressionYI2/Y13 Y24 Y14Y23 keeps its complexity in any 
system and can only be integrated using the methods de
scribed in Chap. 4. 

V. THE PARTIAL FRACTIONING APPROACH 

To get all finite contributions of the tree diagrams to the 
two- and three-jet cross section a representation of the ma
trix element squared has proved frutiful, which has singular
ities only when a certainy II' say Y13' is zero. 20.21 In contrast to 
Eq. (47) the stucture of the poles in e can be derived from 
considering the region Y13 <Y solely. Finite contributions 
from other regions can be easily included by numerical inte
grations.21 In the three- and four-jet case they can even be 
calculated so as to include contributions of order y (Ref. 21 ) . 
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We will give here some typical integrals which appear in the 
course ofthe analytical calculation of the singular contribu
tions to the two-jet cross section. [In the three-jet case there 
is essentially one complicated integral, see Eq. (A 1) of Ref. 
14.] 

One can write the matrix element squared in the form 

ME= (AIY13) + (1-2) + (3-4) + (1-2,3-4). 

(68) 

Because of symmetry 

(full phase space) (A IY13) = !(full phase space) ME. 
(69) 

So it is enough to consider the term A IY13' The most interest
ing region is the regionYI34 <Y, which is part of the two-jet 
region [cf. Eq. (B 19) ]. In the whole of Sec. V we shall re
strict our attention to this region. Let us first consider an 
integral which originates from the pole component of the 
term A IYI3 in Eq. (68). (By the pole component we mean 
the limit of A for Y13 going to zero): 

Ip = (phase space)YI34<Y 

Ip = (y- 2EI - 2E)CBi 

+ 2r(1 - E)r(E)(C +B1)(y- 3EI - 3E)B2 

+ 4r2(1- E)r2(E) (y-4EI - 4E)B3, (77) 

Bn = r(1 - E)r( - nE)/r(1 - (n + 1 )E), (78) 

C = r(1 - 2E)r( - E)/r(1 - 3E). (79) 

A remark is in order: in the scheme described in Sec. IV a 
denominator -Y13YI4Y23Y24 emerged. This made the ()' in
tegration in the region Y 134 <Y so tedious. In the partial frac
tioning scheme it turns out that one has only three of those 
four Yij appearing at a time, e.g., Y13(Y13 + Y23) (Y13 + Y24) 
(I), as in Eq. (70), or Y13(Y13 + Y14) (Y14 + Y24) (II). To 
avoid complicated ()' dependences in the case II we change 
the coordinate frame. Exchanging the role of particles 2 and 
4 the () , integration is trivial again and Eq. (76) can be ap
plied. One should note that the structure of invariants is a 
little different in the two systems. In contrast to Eq. (48) one 
has here 

lim Y12 = [Y123/(1 - ZY123)( 1 - u) (1 - z) + UZY24 
Y134- 0 

X [Yl3YI34(Y13 + Y23) (Y13 + Y24)] -I. (70) -2cos(}'(u(1-u)Z(1-Z)Y24)1/2], 
Here 

(phase space)YI34<Y 

= f: dY134ylj:;2E f dY123yli3
2E
(1- Y123)-E 

X fdZ z-E(1 -z) -E f dv v- E(1 - v) -E (71) 

[see (47)]. From 

Y123 = 1 - Y24 + O(YI34), 

Z = Y13IYI34YI23' 

U = 1 - v = Y23/(Y123 - Y13)' 

one gets 

I (Yd -1-2Et d -1-E(1 )-E 
p = Jo YI34YI34 Jo ZZ -z 

X f dvv- E(1-v)-E(1-V(1-ZY134»)-1 

(72) 

(73) 

(74) 

X f dY123Yi232E(1- Y123) -E(I_ Y123(1-ZY134»)-I. 

(75) 

If one neglects terms of order Y one can use the appropriate 
formula 

f dxxk
-

aE(1-X)-E(1-x(1-ZYI34»)-1 

= r(k + 1 - aE)r( - E)r-I(k + 1 - (a + 1)E) 

xr(1- E)r(E)Z-EY i3: + O(Y134)' (76) 

which can be derived from 3.197(3) and 9.131 of Ref. 19. 
The final formula for Jp thus contains terms _ Y - 3E ,y - 4E , 

which in Sec. IV appeared only after subtraction of doubly 
counted infrared regions [see (47) ] : 
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(80) 

Now we tum to some integrals which emerge in the nonpole 
part of Eq. (68). A typical example is 

Iv: = (phase space)YI34<Y 

X [Y12IY123Y134(Y13 + Y14) (Y13 + Y24)]' (81) 

To avoid () , dependences in the denominator we work in the 
system of Eq. (80). The () , dependence in the numerator is 
removed by antisymmetry. One gets 

(82) 

where 

(83) 

The second integral in Eq. (83) can be done after partial 
fractioning 

(1 - zY123)(1 - u(1 - ZY123» 

1 u = +------
1 - ZY123 1 - u( 1 - ZY123) 

(84) 

One is led to one integral of the type 

K(k,l,m,n): = f dy y k
-

2E (1 - y)l-E 

X fdzzm-E(1_Z)n-E(1_Zy)-1 

(85) 
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and one integral of the type 

I(k,/,m,n,a,b): = r(a + b - 2£) tdy yk- 2E(1 _ y)/-E tdz z"'-E(1 _ Z)"-E 
r(a - e)r(b - e)Jo Jo 

X fdU Ua - I - E(1 - u)b-I-E(l - u(1 - zy»)-I. (86) 

Here K can be calculated by expanding (1 - zY) -I near 1, and I can be calculated by doing the u integration with the help of 
the same formulas that led to Eq. (76). In contrast to Eq. (76), in Eq. (86) no approximation can be made. Instead one 
introduces (absolutely convergent) hypergeometric series and gets 

I(k,l,m,n,a,b) = [(a + b - 1 - 2£}/na - e) ]r(1 + e - b)r(l + 1 - e)nn + 1 - e)(0"2 - 0"1), (87) 

where 

0"2 = i: r(j +a +b -1- 2£)r(j+k+b - 3e)r(j+ m +b- 2£) 
j= 00 j1r(j + k + / + b + 1 - 4e)r(j + m + n + b + 1 - 3e) 

(88) 

and 

00 r(j + a - e)r(j + k + 1- 2£)r(j + m + 1 - e) 0" - ~ ---=~..:........::.:---=...;:....:......:.:!........:........:........:....:...-~~--.:........:....:........:.....:...-..=....:.....-- (89) 
1- jf:'or(j + 2 + e - b)r(j + k + / + 2 - 3e)r(j + m + n + 2 - 2£) . 

Here 0"2 - 0"1 converges for all values of k, /, m, n, a, and b 
that appear and can be calculated by a suitable expansion in 
e. 

Now we come to the first integral in Eq. (83). CallitHI : 

r(2 - e)r(1 - e) 
HI = :zFI (1,1 - e,3 - 2£,1 - ZY123) 

r(3 - 2£) 

X(l - Y123(1 -ZY\34»-I. (90) 

Define HI to be the limit of HI for YI23 -+ 0, so that in HI Eq. 
(76) can be used and in Hk = HI - HI one can put 
(I-Y123(1-ZY134»)-1 = (1-Y123)-I. Then for Hk one 
needs 1(1, - 1,0,0,1,2) and for HI 

HI: = f dzz- 2E(1-Z) -E 2FI(1,1 - e,3 - 2£,1 -z). 

(91) 

Both can be evaluated by standard techniques.9.21.22 
In Sec. IV it was very simple to figure out whether a 

term contributed O(y) in the region Y134 <yo One simply 
had to put in the phase space variables z, u, and Y24 and 
count the power of Y134 that emerged. Only double poles in 
YI34 had to be taken into account [see Eq. (71)]. Here we 
have an integrand which cannot be neglected even though 
formally it is of order Yolo The integrand is YI2Y123YI24/ 
(Y13 + Y24)(Y13 + YI4) (Y134 + Y23) (Y14 + Y24)· The contri
bution arises for Y24 -+ 0 as can be seen by partial fractioning 

1 

1 (1 1) 
= Y13 - YI4 Y24 + YI4 - Y24 + Y13 . 

(92) 

Working in the system ofEq. (80) one has 
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-1-2£ -2E -E i :Y il 
IN = 0 dY134Y134 0 dY123YI23 (1 - YI23) 

X f dv v2- E(1_ V)-E 

X f dz z-E(1 - z) -E(Z - v(1 - Z»)-I 

X(z+v(1-Z»-I(1-v(1-ZY134»)-1 

X[ 1 _ 1 ]. 
1 - YI23 + v( 1 - Z)YI34 1 - YI23 + ZYI34 

(93) 

In Eq. (93) the limitY24-+0 has been taken wherever it is 
allowed. 

The YI23 integration can be done with the help of Eq. 
(76). [One should convince oneselfthat it is allowed to re
place 1 - x( 1 - ZY134) by 1 - x + ZY134 in the denominator 
ofEq. (76).] One gets 

IN = r(1- e)ne) f dY\34Y131- 2E 

X f dz z-E(1- z) -Ef dv v2- E(1_ V)-E 

X(v- E(1 -z) -E - z-E)(1 - v(1- ZY134»)-1 

X(z+v(1-Z»)-I(Z-v(1-Z»)-I. (94) 

Define I~ to be the limit of IN for V-+ 1, so that in I~ = IN 
- I~ one can put (1 - v(1 - ZY134»)-1 = (1 - v) -I, 

I~ = r(1-e)ne) fdY134YI31-2E 

X fdZZ-E(1-Z)-E(2z-l}-1 

X ((1 - z) - E - Z - E) f dv v - E (1 - v) - e 

x(l- V(1-ZY134»)-I. 
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InI~ the v integration can be done with the help ofEq. (76). 
One gets 

IN = r2(1 - e)r2(e) (y-4£1 - 4E)Zo 

+ r(1 - e)r(e) (y - 3£1 - 3e)ZI> (96) 

where 

Zo = dz z - 2£ (1 _ z) - £ - Z - Z i l (1 ) -£ -£ 

o 2z-1 
(97) 

and 

ZI = fdZ z-£(1-z) -£fdV v2 -£(1- v) -1-£ 

X v-£(1-z) -£ -z-£ . (98) 
(1- (1-z)(1 + v»)(I- (1-z){1- v») 

Here Zo may be calculated by expanding in e. This is not 
possible for Z 1> because Z I has a singularity for v -.}. By 
successive partial fractioning one can isolate this singularity 
into an elementary integral 

(l-zl(1 + v»)(1 -zl(1- v») 

1 + 1 , (99) 
2z(I-zl(1 +v») 2z(I-zl(1-v») 

1 

(1- v)(l-zl{1 + v») 
1 z 

(1- 2z1)(1 -ZI(1 + v»)' 
(100) 

with Zl = 1 - z. The result is 

Zo = ~ S2e + (~S3 + 6S3ln 2)e
2 

+ (16s2ln22 - ~ ln42 + ~ S4 - 16L4 (!))e3 + O(e4
), 

(101 ) 

ZI = - ~ S2 + ( -1/ S3 - ~ S2 - ~ S2ln 2)e 

+ ( - 9s2ln 2 - 6s2ln22 + 11n42 - ~ S3 

- Jj S4 - ~ S2 + 6L4(!))e2 + O(e
3
). 

Here22 

VI. SUMMARY 

( 102) 

We have described the calculation of various integrals 
which appear in two-loop calculations. All integrals can be 
calculated by analytical means. Properties of the hypergeo
metric functions and of the gamma function and its deriva
tives are the essential ingredients of the calculations. 
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APPENDIX A: STANDARD VIRTUAL INTEGRALS 

With the help of Ref. 5, 

I dnk (k 2)' 

(21T)n (k 2 _ C)m 

.( l)r-m = I - cr-m+nI2 

( 16r)n14 

X r(r + (mI2»)r(m - r - (nI2») 
r(nI2)r(m) , 

(At) 

one gets 

I dnk 
1·-

. - (k 2)a( (k _ q)2) 13 

= i( _ q2) -£r-£(q2)2-a-13 

xr(2-e- p )r(2-e-a) r(a+p+e-2) 

r( 4 - 2E - a - P) r(a)r(p) 

(A2) 

.-I dnkkJJ _ 2-e-a 
I JJ . - (k2)a(k _ q)2) 13 - qJJ 4 _ 2E _ a _ pI, 

(A3) 

I dnk kJJkv 
IJJv:= (k 2)a(k_q)2)13 

= gJJV (q2)3 - a - 13 VI (a,{3) + qJJqv (q2)2 - a - 13V2(a,{3) , 

(A4) 

f dnk kJJkvkp 
I .-
JJVp·- (k 2)a(k_q)2)13 

= ZJJvP (q) (q2)3 - a - 13 WI (a,{3) 

+ qJJqvqp (q2)2-a- 13W2(a,{3), 

I dnk kJJkvkpku 
I .-

JJVpu· - (k 2)a(k _ q)2) 13 

(A5) 

=XJJVpu(q2)4-a-13W5(a,{3) + YJJVpu (q)(q2)3-a-13 

X W4 (a,{3) + qJJqvqpqu (q2)2 - a -13W3(a,{3), 

(A6) 

V
I
(a,{3) = ir-£( _ q2) _£r(3 - a - e)r(3 - P - e) 

2r( 6 - a - p - 2E) 

r(a+p+e-3) (A7) 
X r(a)r(p) , 

V
2
(a,{3) =ir-£( _q2)_£r(4-a-e)r(2- P-e) 

r(6-a-p-2E) 

r(a +p+e - 2) (A8) 
X r(a)r(p) , 

W I (a,{3) = [(3 - a - e)/(6 - a - p - 2e)] VI (a,{3) , 

(A9) 

W2(a,{3) = [(4-a-€)/(6-a-p-2E)]V2(a,{3), 

(AlO) 

W34 (a,{3) = [(5 - a - e)/(7 - a - p - 2E)] W2(a,{3) , 

(All) 

W4(a,{3) = [(4 - a - e)/(7 - a - p - 2E)] WI (a,{3) , 

(AI2) 
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x r(a+p+e-4) 
r(a)r(p) , 

Z/.wp (q) = ql'gvP + qvgp.p + qpgl'v' 

Yl'vpu(q) = ql'qvgPU + permutations, 

XI'VPu = gl'vgPU + permutations. 

APPENDIX B: PHASE-SPACE FORMULAS 

(A13) 

(AI4) 

(AI5) 

(AI6) 

The phase space for j massless final state particles in n 
dimensions is 

PS(j) = (217')n II ~'_ I ~+ (p7)~n q - L Pi . f j d
n

. (j) 
i=1 (217') i=1 

(Bl) 

Forj = 3 and q2-channel processes it can be fully expressed 

by the invariants YmJl23: 

(B2) 

Forj = 4, two angle variables (J,(J' are needed. They are de
fined as follows. One chooses a system, where PI + P3 = 0 
and where P2 lIez (Ref. 14), 

PI = .,fY;;/2( 1, ... ,sin (J cos (J ',cos (J)..jqz, 

P2 = (YI23 - YI3)/2.,fY;;(1, ... ,O,1)..jqz, 

P3 = .,fY;;/2( 1, ... , - sin (J cos (J', - cos (J)..jqz, 

P4 = (Y134 - YI3)/2.,fY;;( 1, ... ,sinp,cosp)..jqz. 

Setting v = ! (1 - cos (J) one gets 

(B3) 

(B4) 

(B5) 

(B6) 

X (Y13 + 1 - YI23 - Y134) -£Yi3£(J(YI3)(J(YI34YI23 - YI3) 

(J( 1 )1
1 d -£(1 ) -£[ d(J' . -2£(J' X YI3 + - YI23 - Y134 V V - V -- sm , 

a a }Ve' 
(B7) 

where}Ve' is defined after Eq. (47). 
For integrations over all of phase space a representation of PS(4) is useful, where all integrations are between 0 and 1: 

PS(4) _ q 17' q d I - 2£ 1 _ 2 - 3£ 4(4 / 2)3£ 11 
- 2048rr(2 - 2e)r( 1 - e) a Y134Y134 ( Y134) 

Here z = YI3/YI34YI23 and s = YI23(1 - ZYI34)/(l - YI34)' 
The invariantsYij may be expressed with the help of variables 
appearing in (B8): 

YI2 = (1 - YI34)SV, 

Y23 = (1 - YI34)S( 1 - v), 

YI4 = YI34( 1 - ZYI23) [v( 1 - r) + r( 1 - v) 

- 2 cos (J '(v(1 - v)r(1 - r»)1/2], 

Y34 = Y134(1 - zYI23)[ (1 - v)( 1 - r) + vr 

+ 2 cos (J'(v(1- v)r(1- r»)1/2], 

where r: = ZY24/(1 - ZYI23)( 1 - ZYI34)' 

(B9) 

(BlO) 

(Bll) 

(B12) 

(B13) 

In the main text we are concentrating on the region 
YI34 <yo There the invariants may be approximated by 

955 

YI2 =YI23V, 

Y23 =YI23(1 - v), 

Y24 = 1 - Y123' 

YI4 = YI34[V(l - z) + ZY24(1 - v) 

- 2 cos (J '(v( 1 - v)z( 1 - Z)Y24)1/2], 
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(B14) 

(BI5) 

(BI6) 

(BI7) 

Y34=YI34[(I-v)(1-z) +VZY24 

+ 2 cos (J '(v(1 - v)z(1 - Z)Y24)1/2]. (BI8) 

The phase space in this limit is 

(4) 1-2£ i
y 

pSY1 >4<Y = a dY134Y134 

xf dY24Y2"4£(1 - Y24)1-2£ 

X f dz z-£(1- z) -£f dv v-£(1- v)-£ 

X --sm- 2£(J'. 1" d(J' . 

a }Ve' 
(BI9) 

If one exchanges the role of particles 2 and 4 in (B7) and 
evaluates the limit Y 134 .... 0 one gets back (B 19 ) . However, v 
now has a different meaning and the structure of the invar
iants differs from (B14)-(BI8) (apart from 2++4 inter
change): 
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Y24 = I - Y123' (B22) 

Y12 = [Y123/(1 - ZY123) ][v(1 - Z) + z(1 - V)Y24 

- 2 cos (I '(v(1 - V)z(1 - Z)Y24)1/2], (B23) 

Y" = [Y123/(1 - ZY123)][ (1 - V)( I - Z) + ZVY24 

+ 2 cos (I '(v(1 - Z)z(1 - V)Y24)1/2]. (B24) 

APPENDIX C: MISCELLANEOUS SERIES 

In this appendix we have selected some series that have 
proved useful in two-loop calculations and that are not stan
dard. Most of them are taken from Ref. 9. A few appear in 
Ref. 23 in the form of integrals: 

f r(k + c) = r(c)r(1- c) 
k=O k!q(k) 

= ~ r( -aj) 
~ -------.:...---, c<l, (CI) 
j=1 r(1-c-a j )q'(a j ) 

where q(k) is a polynomial of degree n in k and q' its deriva
tive. The roots a j of q(k) must be simpler, 

f r(k+b) =r(b)(x(a)-x(a-b»), a>b, 
k=1 r(k+a)k r(a) 

(C2) 

where t/J is the logarithmic derivative of the r function 

f r(k+c) 
k=O k!(ka + b)2 

= r(c)r(1 - c)r(b la)(t/J(!. _ c + I) _ t/J(!.)), 
a2r(bla -c+ I) a a 

co L t/J(n) (k + I )xk 
k=O 

n! I-x 

- l<x<l, n = 1,2, ... , 

and the Ln are Eulers n logarithms, 

~ t/J(k) - t/J(1) _ r 
~ k 2 -!o3' 

k=1 

~ (t/J(k + I) - t/J(1»)2 = 17;4 
k~1 k 2 4 ' 

~ t/J(k) - t/J(1) = ;4 
k~1 k 3 4 ' 
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(C3) 

(C4) 

(C5) 

(C6) 

(C7) 

(C8) 

(C9) 

f (- I ~:t/J' (j) 85 ( I ) 7 --;4+4L4 - +-;3 In2 
16 2 2 j=1 ] 

(ClO) 

(Cll) 

(C12) 

Sums with a denominator (k + a) (k + b)'" can be calcu
lated by partial fractioning, e.g., ~It/Jklk(k + I) = 1. 
Further sums can be found in Ref. 22. 
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Generalized coupling coefficients for 0(6)::J 0(5) and 0(5)::J 0(3) in 
Bose-Fermi symmetries for odd-odd nuclei 

P. Van Isacker 
School 0/ Mathematical and Physical Sciences. University o/Sussex. Brighton BNl 9QH. England 

(Received 30 July 1986; accepted for publication 10 December 1986) 

Generalized coupling coefficients associated with the reductions 0(6) :::>0(5) and 
O( 5) :::> O( 3) are derived in cases of interest for the U! (6) X U~ (6) X U~ ( 12) X U~ (4) scheme 
for odd-odd nuclei. 

I. INTRODUCTION 

With the success of the interacting boson model (IBM) 
of Arima and Iachello, I interest has grown in the application 
of group-theoretical methods in nuclear physics. Originally 
this approach was confined to the study of even-even nuclei 
and, based on group-theoretical techniques, an overview was 
given2-5 of the predictions of the IBM with regard to such 
nuclei. At a later stage these ideas were extended to odd-A 
nuclei,6 which are approximated as a system of bosons and 
one fermion. A group· theoretical treatment of such systems 
leads in a natural way to Bose-Fermi symmetries for odd-A 
nuclei,7 which have been studied extensively in situations 
appropriate in various regions ofthe mass table.8-13 Parallel 
to this development for odd-A nuclei, even-even nuclei were 
studied further in detail and, specifically, neutrons and pro
tons were considered separately, unlike in the original ver
sion of the IBM, where no distinction is made between them. 
Again this neutron-proton version of the model-usually 
referred to as the IBM-2-has been studied in a group-theo
retical context, and some of its symmetry properties are dis
cussed in Ref. 14. In a recent developmentl5

-
17 a description 

of odd-odd nuclei was proposed in the framework of the 
IBM. In essence it represents a merger of the interacting 
boson-fermion model (IBFM) for odd-A nuclei and the 
IBM-2, in that the bosons and fermions as well as the neu
trons and protons are treated explicitly. The relevance of 
such schemes for odd-odd nuclei is at present under investi
gation. 

Although all models mentioned above have an identical 
conceptual structure, they have become increasingly more 
complex. This is especially true for the Bose-Fermi symme
tries for odd-odd nuclei. Nevertheless, to assess the rel
evance of any of such schemes it is necessary to carry out 

explicit calculations to obtain its predictions. The most 
straightforward way to accomplish this is by finding the real
ization of the states in terms of bosons and fermions for the 
neutrons and protons. This in tum reduces to the calculation 
of generalized coupling coefficients for the various groups 
appearing in the symmetry under consideration. 

In this paper the U!(6)XU~(12)XU~(6)XU~(4) 
dynamical symmetry of Ref. 16 will be analyzed. Two plau
sible group chains will be studied, one of which was applied 
in Ref. 16 to the excitation-energy properties of 198Au and 
another one which conceivably might be of use for the inter· 
pretation of neutron transfer data in the Pt-Au mass region. 
The properties of both group chains will be shown to depend 
on 0(6) :::>0(5) and 0(5) :::>0(3) generalized coupling co
efficients. A general algorithm to calculate these coefficients 
will be given and some explicit expressions, of interest in 
practical applications, will be derived. 

Notation: All groups with a boson (fermion) realization 
are characterized by a superscript B (F); all groups with a 
neutron (proton) realization are characterized by a sub
script v (17'). Groups with a mixed realization (i.e., formed 
by adding different types of generators) are denoted by a 
sum in the superscript and/or subscript. Irreducible repre
sentations (irreps) of unitary groups [mostly U(6)] are la
beled as [NI' N2, N3 , ... ], irreps of 0(6) as (0'1,0'2,0'3)' and 
irreps of 0 ( 5) as (1'1' 1'2)' If some label is suppressed, it is 
zero. For instance (0') == (0',0,0), (1') == (1',0), etc. 

II. BOSE-FERMI SYMMETRIES FOR ODD-ODD NUCLEI 

The Bose-Fermi symmetry considered in Ref. 16 is ap
propriate for situations in which the neutrons occupy orbits 
with angular momentaj =!, ~,and~, and the protons have 
j = ~. The associated group chain is ofthe form 

U!(6) XU~(6) XU~(l2) XU~ (4) :::>U!.:t- 't(6) XU~(6) XSU~(2) XSU~(4) :::>U!-t;(6) XSU~(2) 
IN.] IN"] [IJ [IJ [N,.N,J [IJ ! [IJ [N"N"N,J ! 

XO~ (6) :::>O!-t ;(6) XSU~(2) X~(6) :::>0!-t;(6) XSU~(2) :::>0!-t;(5) XSU~(2) :::>OB+F(3) 
(H,!> (17,,17,,17,> ! (B,P (u"u"u,> ! (T"T,) ! V+; 

XSU~(2) :::>0(3) :::>0(2), 
! L M 

(2.1 ) 

where belo~ each gro~~ the associated quant,um numbers are ~ndica~ed. Th7 group U! (6) X U~ (6) X U~ ( 12) X U~ (4) serves 
as a dynamical group 10 the sense that one s10gle representation of It contams the states of a specific odd-odd nucleus. Hence, 
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Nv and N 11" are fixed and are equal to the number of neutron and proton bosons. All other quantum numbers are obtained by 
standard reduction and multiplication rules. Note that in general the ~:~(5) ::>0!:~(3) reduction from (1"1,1'2) toJis not 
multiplicity-free and that an additional index is needed besides J.7

•
19 However, in the cases of practical interest considered 

below, this multiplicity problem does not arise and the additional index will be omitted in the ~: ~ (5) ::> ~: ~ (3) reduction 
as well as in other, similar cases. The quadratic Casimir operator ofU! + 11" (6) is proportional to a symmetry term between the 
neutron and proton bosons.' 4 It brings the symmetric irrep [Ny + N11"] == [N] lower in energy by about 2 to 3 MeV compared 
with thenextirrep [N - 1,1] ofU!+ 11"(6). For applications in odd-odd nuclei one may thus assume [h\,N2 ] = [N]. A wave 
function associated with the group chain (2.1) will be denoted as 

I [NI,N2] (UI,(2) (UI,U2'~) (1"I,1"2)JLM), (2.2) 

where the quantum numbers that are the same for all states of a given odd-odd nucleus (such as Ny,N 11"' etc.) are omitted. This 
wave function is written explicitly as follows: 

I [NI,N2] (U,U2) (UI,U2,P (1"I,1"2)JLM) 

L.:! I} fL ~ ~} 
J j 1L 1 J 

x ( (1"B) (1"F) I (T0'2»)(UI'U2) q,!,!) I (UI,U2,P) (T0'2) (!,!) I (1"1'1"2») 
aBLB LF L (TI,T2) (!'1) (1"1,1"2) L ~ J 

X «(B!( [Nv ] (uv)( 1"v )avLv) XB:( [N11" ] (U11") (1"11" )a11"L11"» (LB
) xa! (j»)(J) xa: (V)~) 10), 

(2.3 ) 

where the summation runs over j =!, ~, ~, 

{- }=={TI,T2,L, :l}, {v} == {uy,1"",av,Lv}' {1T}=={U11",1"11",a11",L11"}' {B}=={uB ,1"B,aB,LB}' {F}=={rF,LF}· 

The operator B! (B:) creates a many-neutron (proton) boson state with 0(6)::>0(5)::>0(3) symmetry; the operator 
a! (a:) creates a neutron (proton) fermion. The coefficients (: :1:) are generalized coupling coefficients (GCC) orisoscalar 
factors. 18 The first three GCC's in Eq. (2.3) are associated with the reduction U(6) ::>0(6), 0(6) ::>0(5), and 0(5) ::>0(3), 
respectively, and are defined in Ref. 14. Tht: next three GCC's are associated with the same reductions, and general expres
sions for them are given in Ref. 11. The last two GCC's in Eq. (2.3) are 0(6) ::>0(5) and 0(5) ::>0(3) coupling coefficients 
and are unknown. The problem of finding an explicit realization of the wave function (2.2) is thus reduced to the calculation 
ofthese two GCC's. The expression (2.3) can be simplified considerably as follows: 

I [NI,N2] (u,u2) (UI,U2,P (1"I,1"2)JLM) 

_ _ J-J - 1/24 ~ ~} (UI'U2) q,!,!) I (UI,U2,P) (T0'2) (1'!) I (1"1'1"2») 
-)( 1) (2J+l)(2J+l)) L 1 J (- -) (11) ( ) L 3 J 

(":'} 2 1"1,1"2 2''2 1"1,1"2 2 

X (A !([N,N2] (u\,u2) (T\,T2)U)xa: (~) )~) 10). (2.4) 

The operator A ! creates a state of an odd-neutron nucleus with quantum numbers defined according to the 0 (6) limit of 
U B (6) X U F(12)." 

From Eqs. (2.3) and (2.4) it is clear that in the group chain (2.1), first the neutron is coupled to the bosons and then the 
proton is coupled to the bosons. This coupling order is appropriate for calculating proton-transfer strengths. For neutron 
transfer a different coupling order should be imposed which is associated with the group chain 

U!(6) XU! (6) XU~( 12) XU~ (4) ::>U!+ 11" (6) XU~(6) XSU~(2) XSU~(4) ::>O!+ 11" (6) XO~(6) XSU~(2) 
INv] IN,,] [IJ [IJ [NJ [IJ ! [IJ (aB) (1) 

XO~ (6) ::>O!: ~(6) XO~(6) XSU~(2) ::>O!: ~(6) XSU~ (2) ::>~: ~(5) XSU~ (2) ::>O!: ~(3) 
(H!) (iT,.H) (1) ! (a,.a,.!) ! (r,.T,) ! J 

XSU~(2) ::>0(3) ::>0(2). 
! L M 

In the same way as for chain (2.1) an abbreviated notation can be introduced for the wave function, i.e., 

I (uB) (o-"M) (UI,U2'!) (1"I,1"2)JLM), 

and this wave function is written explicitly as follows: 
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Again, all GCC's are known (see Refs. 9 and 11) except for 
the last two, which are associated with the reductions 
0(6) :::>0(5) and 0(5) :::>0(3), respectively. As above, 
expression (2.7) can be simplified as follows: 

I (UB) (UI.!'!) (UI,U2'!) ("1>"2)JLM) 

= I. I. I.( _l):i+L+3/2 
j {-} {F} 

{I L J} 
X(2j+l)(2J+1))1/2! :. j 

x(~I'M)(l) I (UI ,U2,!») (1"~!)("F) I ("1'''2») 
("'!)("F) ("1'''2) J LF J 

X (A !(UB )(UI'!,!) (T1,!)I)Xat (j) )~). (2.8) 

The operator A ! creates a state of an odd-proton nucleus 
with quantum numbers defined according to the Spin (6) 
limit ofUB (6) XUF (4).9 

In Secs. III-VI expressions for the GCC's appearing in 
Eqs. (2.4) and (2.8) will be derived. 

III THE 0(5):::>0(3) Gee (TlIT2)(·hl)j(T,.T2») 
. L ! J 

These 0 (5) :::> 0 (3) GCC's are defined as a transforma
tion from the coupled basis Oa(5)XOb(5):::>Oa+b(5) 
:::>Oa + b (3) to the uncoupled basis Oa (5) XOb (5) :::>Oa (3) 
XOb (3) :::>Oa+ b (3): 

I (1',1'2),(!'!);( "1'''2)JM) 

= i:(1'~2) (!t I ("1;2»)1 (1'I,1'2)L,(M)~;JM). 
(3.1 ) 

The 0 (5) :::> 0 (3) GCC's are thus obtained by diagonalizing 
C2( 0 a + b (5») [the quadratic Casimir operator of 0 a + b ( 5) ] 
in the uncoupled basis. Denoting the generators of Oa (5) 
and Ob (5) by T~k) and Tik) (k = 1,3), the operator 
C2(Oa+ b (5») can be written as 

C2(Oa+b (5») = 2 I. (T~k) + T~k». (T~k) + Tik» 
k= 1,3 

+4 I. T~k)'T~k), (3.2) 
k= 1,3 

and hence, the matrix elements of C2(0 a + b (5») are given by 

«1\,1'2)L,(!,D~;J IC2(Oa + b (5»1 (1'I,1'2)L ',q.!)~;J) 
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=(1'1(1'1 +3) +1'2(1'2+ 1) + ~)c5LL' 

+ 4 I. (- 1)3/2+J+L'{~ ~, J
k

} 
k = 1,3 ~ L 

X «1'1>1'2)L IIT~k)II(1'I,1'2)L') 

X «MHIITlk)II(M)~). (3.3) 

The expressions for the matrix elements of T~k) and Tlk) in 
Eq. (3.3) are still needed. Using the realization9 

T~k) = [( - 1)(k+ 1)/2/v'2](at(~)a(m(k), 

I (M)~) = at(mO), 

one finds 

(3.4a) 

(3.4b) 

For the matrix element of T ~k) two cases occur in the sum
mation in Eq. (2.4): (i) 1'2 = 0, and (ii) 1'2 = 1. The matrix 
elements «1')L IIT~k)1I (1')L') can be computed from a rea1-
ization in terms of d-bosons.2 The matrix elements 
«1',I)L II T ~k) II Cr,I)L ') can be reduced to the first case by 
realization of 0 ( 5) in terms of two kinds of d-bosons (say v 
and 17'): 

The matrix elements then become 

«1',I)L IIT~k)II(1',I)L') 

=«1',I)L IIT~~) + T~~)II(1',1)L') 
= ~ (~)(l) I (1',1»)(~)(1) I (1',1)) 

_41. L 2 L L' 2 L' L,L' 

X [( _l)L+L'+k(2L + 1)(2L' + 1))1/2 

X«1')IIIT~~)I1(1')I'){;, t, !} 
+ (_l)L+L+k«2L + 1)(2L' + 1))1/2 

X (d1TIIT~~)lId1T) {;, ~ ~}c5u,], (3.7) 

where the O( 5) :::> O( 3) GCC's can be taken from Ref. 11. 
From Eqs. (3.5) and (3.7) the matrix element (3.3) is ob
tained, which in tum determines the 0(5) :::>0(3) GCC's. 
The coefficients that are needed in the calculation of proper
ties of odd-odd nuclei are given in Tables I-III. 
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J L=2 L=4 

(W 1 

~ -JiJ 
..M ,JH 

1 

JiJ ~ 
,JH -..M 

1 

These 0(6) ::JO(5) Gee's appear in the transforma
tion from the coupled basis Oa (6) XOb (6) ::JOa +b (6) 

::JOa + b (5) ::JOa +b (3) to the uncoupled basis Oa (6) 
XOb(6) ::JOa (5) XOb (5) ::JOa (3) XOb (3) ::JOa+b (3): 

I (U.,U2)' (M,i); (a.,a2'!) (r.,r2)JM) 

= L L (~.'~2) <!;!;!) I (a.,a2,!») 
T"T, L (r.,r2) (~,~) (r.,r2) 

(
CT.,1'2) (i,i) I (r.,r2») 

X L ~ J 

X I (U.,U2) (1'.,1'2)L, <!,M) (!,!>~;JM). ( 4.1a) 

The inverse transformation reads 

J 

J L=1 L=2 L=3 L=4 

(W -.Jf "fl 
..a -JJ; ..a -JiJ 

-m; -.,[l; --RK 
(W n; ~ JR 

~ ~ -~ -,fR 
~ .m 

I (u.,u2) (1'.,1'2)L,(!,!,!) q,!)~;JM) 

= L L (U.,U2 ) (!,!,p I (a.,a2,!») 
u"u, T"T, (1'.,1'2) (!,!) (r.,r2 ) 

(
1'.,1'2) (!,!) I (r.,r2 ») 

X L ~ J 

= I (U.,U2),q,!,!);(a.,a2'!)( r.,r2)JM). 

If the matrix elements of the operator 

(T~2l + Tfl). (T~2l + Ti2l ) 

= C2(Oa+b(6») - C2(Oa+b(5») 

= C2(Oa (6») - C2(Oa (5») + C2(Ob (6») 

- C2(Ob(5») + 2T~2l'Ti2l 

L=5 

,JR 

,JR 

( 4.1b) 

(4.2) 

between the states (4.1 a) and (4.1 b) are calculated, the fol
lowing relation is derived: 

( ~.'~2)(!'!;!) I (a.,a2,i») (1'.,1'Z) <!:!) I (r.,r2»){(a.(a. + 4) + a 2(a2 + 2») 
(r.,r2) (!,~) (r.,r2) L 2: J 

960 

-(O".(u. +4) +U2(U2 +2»)+(1'.(1'. +3) +1'2(1'Z+ l))-(r.(r. +3) +r2(r2 + l))-I} 

= L L(~:'~~) q;!;!) I (a.,a2,!») (1'; ':;) (!:!) I (r.,r2 ») 
-,-, L' (r.,r2 ) (~,~) (r.,r2) L 2 J 
II,r2 

x2$( - I)J +L + 5/2{~' 1 ~}«U.,U2) (1'; ,1';)L 'II T~2)11 (U.,U2)(1'.,1'2)L ). (4.3) 

J L=1 

(W -f*, 

(W 
.j1; 

(W ..{1; 
If; 
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L=3 

..{1; 

If; 
1 

f*, 
-.j1; 

1 

Since the 0 (5) ::J 0 (3) Gee's are known from Sec. III, the 
0(6) ::JO(5) Gee's can be obtained from Eq. (4.3) for dif
ferent choices of (u.,u2 ), (a.,a2,!), and (r.,r2 ). Consider as 
an example (u.,u2) = (a,I), (a.,a2,!) = (a + !,~,!>, and 
(r.,r2) = (M). In that case (1'.,1'2) and (1'; ,1'; ) can take the 
values (1), (2), (1,1), and (2,1) and Eq. (4.3) reduces to 
the following set of equations: 
X(1)a = - X(2)(5(a - l)(a + 5 )/8)·/2 

+ X(1,l)(3 (a + l)(a + 3 )/8)·12, 

X(2) (a + 6) 

= -X(1)(5(a-1)(a+ 5)/8)·/2 

-X(2,1)(3(a+ l)(a+ 3)/8)·/2, 

P.Vanlsacker 

( 4.4a) 

(4.4b) 
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TABLE IV. The 0(6)::>0(5) GCC'S(U~ l)<!.WI (U,.u2.!»). 
(1') (M) (1',.1'2) 

(U,.U2.!> (1',,1'2) 1'=T+! 1'=T-! 

(u+~.W (T.P 
( 2u - 21' + 3) 1/2 

4(u+ 3) 
_ (2U + 21' + 9 )'/2 

4(u+3) 

(u+!.W (T.P (2u+2T+9f2 
4(u+3) 

(2U - 21' + 3 )'/2 
4(u+3) 

X(1,I)(O'+ 2) 

=X(1)(3(O'+ 1)(0'+ 3)/8)1/2 

-X(2,1)(5(O'- 1)(0'+ 5)/8)1/2, 

X(2,I)(O'+ 3) 

= -X(2)(3(O'+ 1)(0'+ 3)/8)112 

-X(1,1)(5(O'-l)(O'+ 5)/8)1/2, 

where 

(4.4c) 

(4.4d) 

(4.5) 

Equations (4.4) can be solved for the unknown X(T I ,T2) up 
to an overall factor. Hence 

X(2) = _ (2(0'- 1»)112, 
X(1) 5(0'+5) 

( 4.6a) 

X(1,l) = (2(0'+ 1))112, 
X(1) 3(0'+5) 

(4.6b) 

X(2,1) = _ ( (0'-1)(0'+ 1) )112. 
X(1) 15(0'+3)(0'+5) 

(4.6c) 

The X(T I ,T2) are completely determined after normaliza
tion. The 0(6) :::)0(5) GCC's of practical interest are sum
marized in Tables IV and V. 

V. THE 0(5):::)0(3) GCC's (T~)(1) I (T1,T2») 
J' 2 J 

These 0 (5) :::) 0 (3) GCC's are defined as a transforma
tion from the coupled basis Oa(5)XOb (5):::)Oa+b(5) 

:::)Oa + b (3) to be uncoupled basis Oa (5) XOb (5) :::)Oa (3) 
XOb (3) :::)Oa+b (3): 

(UI,U2'~) (1'1,1'2) (1',,1'2) = 0) 

1 (-T,~), ( 1); (1" 1,1"2)JM) 

= ~ r~~)(~) I (1"1;2»)I(1·,~)J',(1)2;JM). (5.1) 

As in Sec. III, the transformatin matrix can be found by 
evaluating the matrix elements of C2(Oa + b (5»): 

« 1',~)J',( 1 )2;J IC2(Oa + b (5»)1 (1',~)J H ,( 1 )2;J) 

= (1'(1' + 3) + ~)8J'J" + 4 L (- 1)J+J" 
4 k= 1,3 

x{~' ;" ~}«1',~)J'IIT~k)II(1',~)JH) 
X «(1 )2I1T~k)1I (1)2). (5.2) 

The matrix elements of T ~k) are obtained from ad-boson 
realization of 0 ( 5 ) : 

«(1 )211 T~k)1I (1 )2) = ~2k + 1. (5.3) 

The matrix elements of T~k) in Eq. (5.2) are evaluated by 
using a boson + fermion realization of 0(5), i.e., 

1
(1'1 )J') = '" ( 1") (!,!> I (1"~») 

'l £.. L J J' 
T,L l 

(5.4) 

and 

T~k) = (dtd)(k) + ( _ I)(k+ 1)12/v'2(at(~)a(~»)(k). 

(5.5) 

TheO(5) :::)0(3) GCC'sin Eq. (5.4) can be taken from Ref. 
9. From Eqs. (5.3) to (5.5) the matrix element (5.2) is ob
tained, which in turn determines the 0(5) :::)0(3) GCC's. 
Some useful cases are given in Table VI. These determine the 
structure of low-lying states not only in odd-odd nuclei in 
the U~(6) XU!(6) XU~(12) XU~(4) scheme, but also in 
the U B (6) X U F(20) scheme for odd-A nuclei discussed in 
Ref. 20. 

VI. THE 0(6):::)0(5) GCC's«U"hl><1) I <U1,U2,i») 
(T,i) (T) (ThT2) 

These 0(6) :::)0(5) GCC's appear in the transforma
tion from the coupled basis Oa(6)XOb (6):::)Oa+b(6) 

:::) 0 a +b ( 5) :::) 0 a +b (3) to the uncoupled basis 0 a ( 6 ) 
XOb (6) :::)Oa (5) XOb (5) :::)Oa (3) XOb (3) :::)Oa+ b (3): 

(1',,1'2) = (2) (1',.1'2) = 0.1) (1',.1'2) = (2.1) 

(u+!,W (M> C5(u+ 3)(u+ 5»)'/2 
32(u+ 2)(u+4) 

_( 3(u-l)(u+3) f2 
16(u+2)(u+4) 

(5(U+ 1)(u+5) f2 
16(u + 2)(u + 4) 

_ ( (u-l)(u+ I) f2 
32(u+2)(u+4) 

(W ( u+ 5 f2 
2(u+ 2) 

( u-I f2 
2(u+ 2) 

(u+!,W (W ( u+ 3 f2 
2(u+2) 

_( u+l f2 
2(u+2) 

(W «u+ 3)(u+ 5»)'12 
32u(u+ 2) 

_ C(U-l)(U+ 3)f2 
16u(u+ 2) 

_ C(u+ l)(u+ 5»)'/2 
16u(u+2) 

C5(U-l)(U+ 1))'12 
16u(u+ 2) 
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TABLE VI. The 0(5) :::>0(3) GCC's (W(I) I (1"1,1"2»). 
J' 2 J 

+ T(T + 3) - (TI(TI + 3) + T2(T2 + 1)) -~} 

= 8T,,1I22(2J + 1)-1/2 

J'=! J'=~ 

(W .JI ..fl 
(W I 

-II -fyf, 
-~ 

(W -~ -.JI, 
-..{l; .Jl 

~ 

(W .a -,JR 
.fJ v'R 

,JH 
v'lI 

J' =~ 

ff 

~ 
,JR 

J;6 
~ 
v'lI 
.n; 

-,JW, 
~ 
-~ 

I 

X «a,!,!) (TI,!)J IIT~k)1I (a,!.!) (T,!)J') 

x/(a,!,!)(1) I (UI,U2,!»). (6.2) 
\ (TId) (0) (TI,T2) 

Since the 0(5) ::J0(3) Gee's in Eq. (6.2) are known from 
Sec. V and the reduced matrix elements can be taken from 
Ref. 9, the 0(6) ::J0(5) Gee's can be obtained for different 
choices of (UI ,U2,!) and (T I ,T2 ). The cases of practical inter
est are given in Table VII. 

VII. APPLICATIONS 

I (a,!,p (l);(UI,U2,!) (TI ,T2)JM) . 

The results derived in Sees. III-VI fully determine the 
wave functions (2.4) and (2.8) ofthe lowest states of odd
odd nuclei with U!(6) XU~( 12) XU!(6) XU~(4) symme
try. They can thus be used for deriving properties of these 
nuclei such as electromagnetic transition rates and particle
transfer strengths. Hence, the symmetry scheme, which was 
proposed in Ref. 16 on the basis of energy spectra, can now 
be tested in further detail. 

= L L /(a,!,!) (1) I (UI,U2,!») (T,!) (T) I (TI,T2») 
T,T J',L \ (T,!) (T) (TI,T2) J' L J 

X I (a,!,!)(T,!)J',(1)(T)L;JM). (6.1) 

A derivation analogous to the one in Sec. IV leads to the 
relation 

To illustrate this, let us take the example of neutron or 
proton transfer. For one-proton transfer reactions that con
serve the number ofbosons, the transfer strength is given
in simplest approximation-by the square of the reduced 
matrix element 

([NI,N21 (0\,0"2) (UI,U2,!) (TI,T2)JL II a: q) IIGS( v);!), 

(1"101"2) ( 1") 

(u+~,W (W (0) 

(W (I) 

(W (0) 

(W (I) 

(W (0) 

(W (I) 

(W (I) 

(W (0) 

(W (I) 

(W (0) 

(W (I) 
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(7.1 ) 

where the reduced matrix element is defined with a 3j-sym
bolin the convention of Ref. 21. InEq. (7.1), theket denotes 

( 
u+5 )112 

2(u+3) 

( 
u+ 5 )1/2 

lO(u+ 3) 

( 
(u+ 5)(u+ 6) )112 

lO(u+ l)(u+ 3) 

( 
3u(u + 5) )112 

4(u+ l)(u+4) 

( 
I )112 

(u+2)(u+3) 

( 
(2u + 5)2 )112 

5(u+2)(u+3) 

( 
u(u+ 5) )112 

20(u+2)(u+3) 

( 
2u )112 

5(u+ 3) 

( 
u(u+6) )112 

2(u+ l)(u+3) 

( 
3u(u + 6) )112 

70(u+ l)(u+3) 

( 
15 )112 

4(u+ l)(u+4) 

( 
(2u+ 5)2 )112 

28(u+ l)(u+4) 
1 

( 
u(u+ 5) )112 

5(u + 2)(u+ 3) 

( 
9 )1/2 

4(u+2)(u+3) 

( 
27(2u + 5)2 )1/2 

140(u+ 2)(u+ 3) 

( 
5u(u - 1) )112 

14(u+ l)(u+ 3) 

_ (3(U-l)(U+ 6) )112 
28(u+ l)(u+4) 

( 
5(u-l)(u+6) )112 
28(u+2)(u+3) 
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the ground state of an odd-neutron nucleus which has the 
0(6) symmetry ofUB (6) XUF (l2), i.e., 

IGS(v);P =A !([N + I](N + 1)(0)0!)10). (7.2) 

Furthermore, the bra denotes a state of an odd-odd nucleus, 
characterized according to the chain (2.1). The matrix ele
ment (7.1) thus describes the properties of a transfer reac
tion such as ~9Hg1l9 ..... ~;8 AUJl9. From Eq. (2.4) one imme
diately finds the predicted transfer strength: 

([N + I](N + 1)(CTI,CT2,P(!,!)¥-lIa!(VIIGS(v);P2 

_ (N+l)(!,M)I(CT1,CT2,!»)2 (7.3) 
- (2L + 1) (0) (!,!) (M) . 

Hence, two 1 - -2 - doublets are predicted to be excited, and 
their respective strengths can be computed from Eq. (7.3) 
and Table IV. The results are 

([N + 1] (N + 1) (N + M,!) (!d)¥-lIa! (~) IIGS( V);!)2 

= (2L+ 1)[(N+5)/2(N+3)], (7.4a) 

and 

([N + 1] (N + 1) (N + !,M) (M)¥-llat(~)IIGS(v);!)2 
= (2L + 1)[(N + 1)/2(N + 3)]. (7.4b) 

For one-neutron transfer properties the matrix element 

«CT B) (iT1,M) (CT1,CT2,P (T1,T2)JL lIa! (j) IIGS( 1T);~) (7.5) 

should be calculated, where the bra denotes a state of an 
odd-odd nucleus, characterized according to the chain 
(2.5), and the ket denotes the ground state of an odd-proton 
nucleus which has the Spin (6) symmetry ofUB (6) X UF 

( 4), 
i.e., 

IGS(1T);~) =A !(N)(N + !,M)(M)~)IO). (7.6) 

The matrix element (7.5) thus describes the properties of a 
transfer reaction such as ~;7AuIl8 ..... ~;6Aull7' From Eq. 
(2.8) one finds the predicted transfer strength: 

«N) (N + !,M) (CT1,CT2,!)( T1,T2)JL lIa! (j) IIGS( 1T);~)2 

= (2j + 1)(2J + 1)(2L + 1){! i. ~r 
x(N + !,!,!) (1) I (CT1,CT2,!»)2, (7.7) 

(M) (TF ) (T1,T2) 

where (TF )LF = (0)0 forj = ! transfer and (TF )LF = (1)2 
forj = M transfer. Simple predictions for the neutron trans
fer can now be obtained from Eq. (7.7) and Table VII. 

Finally, it should be noted that the chains (2.1) and 
(2.5) define a different basis, and hence, in general states in 
both classification schemes do not coincide. The transforma
tion matrix between the two bases is an 0(6) Racah coeffi
cient multiplied by a U(6) ::>0(6) GCC, i.e., 
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(7.8) 

For the lowest states of 198 Au shown in Ref. 16, this transfor
mation matrix reduces to unity and such states do coincide in 
both schemes. Specifically, this is true for states with 
(CT1,CT2,P = (N + ~,M) and (N + !,M), the correspondence 
being given by 

I [N + I](N + 1) (N + M,P (T1,T2)JLM) 

== I (N) (N + !,M) (N + ~,M) (T1,T2)JLM), (7.9a) 

I [N,I] (N,I)(N + M,P (T1,T2)JLM) 

== I(N)(N + M,!)(N + !,M)(T1,T2)JLM), (7.9b) 

where the wave functions on the left-hand side are classified 
according to Eq. (2.2) and the ones on the right-hand side 
according to Eq. (2.6). 
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A several-particle system is called a molecule in the Born-Oppenheimer approximation. The 
nonrigidity of molecules involves difficulty in molecular dynamics. Guichardet [A. 
Guichardet, Ann. Inst. H. Poincare 40, 329 (1984)] showed recently that the vibration motion 
cannot in general be separated from the rotation motion, by using the connection theory in 
differential geometry. The point of his theory is the observation that a center-of-mass system is 
made into a principal fiber bundle with rotation group as the structure group, and is equipped 
with a connection by the Eckart condition of rotationless constraint. The base manifold of this 
bundle is called the internal space. The fact that the connection has nonvanishing curvature 
gives rise to the nonseparability of vibration from rotation. This is a mathematical meaning of 
nonrigidity of molecules. As an application of the connection theory due to Guichardet, this 
paper establishes a gauge theory for nonrigid molecules on the basis of the observation that the 
vector bundle associated with the principal fiber bundle (the center-of-mass system) provides a 
setting for quantum mechanics of the "internal" molecular motion. The interest, however, 
centers on planar triatomic molecules in order to put forward the gauge theory in an explicit 
manner. The conclusion is this: The internal space of a planar triatomic molecule is 
diffeomorphic with R3 - {a}, and endowed with Dirac's monopole field which may be 
interpreted as a Coriolis field induced by the rotation. The angular momentum eigenvalues, 
which are twice the quantized monopole strengths, assign the complex line bundles over the 
internal space. The internal states of the molecule are described as the cross sections of the 
complex line bundle, on which the internal Hamiltonian operator acts in minimally coupling 
with the monopole field. 

I. INTRODUCTION 

In this paper, a molecule means a system of particles or 
atomic nuclei in the Born-Oppenheimer approximation. 
The quantum mechanics of molecules has been studied by 
the use of the Eckart frame.! However, the Eckart Hamilto
nian is interpreted as valid in the vicinity of the equilibrium 
nuclear position. If one wishes to study molecular motions 
far from the equilibrium nuclear position, one must become 
involved with the difficulty in separating off rotation from 
vibration. 

It is Guichardet2 who proved that the rotation motion 
cannot be separated from the vibration motion on the basis 
ofthe connection theory in differential geometry. The point 
of his proof is the observation that the center-of-mass system 
is made into a principal fiber bundle with rotation group as 
the structure group, and is equipped with a connection by 
the Eckart condition of rotationless constraint. The base 
manifold of this principal fiber bundle is called the internal 
space. 

The connection theory fits mechanics of many-body sys
tems. Indeed, the connection form due to Guichardet is ex
pressed as a differential one-form which is associated only 
with the total angular momentum and the inertia tensor. 
Thus the Eckart condition is expressed in terms of the con
nection form. The nonintegrability of the Eckart condition is 
then measured by the curvature two-form defined as the "co
variant" derivative of the connection form. Through the 
connection theory, the rotation, vibration, and internal mo
tion of the molecule are rigorously realized. The vibration is 

not equal to the internal motion, while it induces the internal 
motion. Guichardet's conclusion of the nonseparability of 
rotation and vibration is stated as follows: Performing a 
purely vibrational motion, a molecule can, at the end of a 
finite time, come to a final configuration which is deduced 
from the initial one by an arbitrary pure rotation. 

On the basis of Guichardet's observation, the present 
autho~ showed that a moving frame, called the Eckart 
frame, exists relative to which the molecule moves without 
rotation, but it depends on a choice ofthe molecular motion 
and is not unique for any molecular configuration. For this 
reason, the Eckart frame is not suitable for describing mo
tions of nonrigid molecules in quantum as well as classical 
mechanics. 

The purpose of this paper is to establish quantum me
chanics of nonrigid molecules as a gauge theory. The point is 
the idea that the complex vector bundle associated with the 
center-of-mass system is a quantum-mechanical arena for 
internal molecular dynamics. The introduction of the com
plex vector bundle is a geometric consequence of the conser
vation of the total angular momentum. For planar molecules 
this idea is explained easily as follows: Since the rotation 
group SO(2) acts on the center-of-mass system for the 
planar molecule, wave functions on the center-of-mass sys
tem are expanded into Fourier series in the rotation angle, 
expansions in the eigenfunctions of the angular momentum 
operator. Each Fourier coefficient then might be considered 
as a function of internal coordinates, which describes the 
internal state of the molecule with the assigned angular mo
mentum eigenvalue. However, as the center-of-mass system 
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does not decompose into a product space of the space of the 
rotation angles (e=S I) and the internal space, the Fourier 
coefficient is not a globally defined function on the internal 
space. Since a plural number of product spaces of S 1 and an 
open subset of the internal space may cover the center-of
mass system, from the Fourier series of the wave function 
restricted on each product space one can get a collection of 
locally defined wave functions on open subsets in the inter
nal space. These local functions are pieced together through 
gauge transformations. Geometrically speaking, the local 
functions pieced together are identified with a cross section 
in a complex line bundle over the internal space. The cross 
sections in the complex line bundle thus describe the internal 
states of the planar molecule with the prescribed angular 
momentum eigenvalue. If the eigenvalue is zero, the com
plex line bundle becomes trivial, that is, the total space of the 
bundle becomes a product space of the internal space and the 
complex line C, so that the sections in this case are nothing 
but the functions on the internal space. For the molecules in 
the space, complex vector bundles are used in place of the 
complex line bundle. 

The internal Hamiltonian operator for the internal mo
tions of the planar molecule may be derived from that acting 
on wave functions of the center-of-mass system. In fact, op
erating each term of the Fourier series with the Hamiltonian 
on the center-of-mass system, one can get a local expression 
of the internal Hamiltonian operator acting on local func
tions on the internal space. In order to get a global expres
sion, one must pass to the complex line bundle. To look into 
the internal Hamiltonian operator, a certain kind of first
order differential operator is worth mentioning. The deriva
tive of each term of the Fourier series in the direction of a 
vibrational vector gives rise to a locally defined first-order 
differential operator on the internal space, which may be 
interpreted as expressing the minimal coupling of the inter
nal motion with some magnetic field on the internal space. 
This first-order operator can be defined rigorously as a co
variant derivation in the complex line bundle. 

The above idea is summed up in terms of the bundle 
theory as follows: The complex line bundle, which is as
signed by the eigenvalue of the angular momentum operator, 
is endowed with a linear connection (or a covariant deriva
tion) from the connection of Guichardet on the center-of
mass system. The curvature of the linear connection is inter
preted as a magnetic field on the internal space. The 
covariant derivatioJ). describes the minimal coupling of inter
nal motions with the magnetic field. The internal Hamilto
nian operator can be expressed globally in terms of the co
variant derivation. Thus one can picture that the rotation 
induces on the internal space the magnetic field with which 
the internal motion is minimally coupled. 

The interest of this article, however, centers on the 
planar triatomic molecules in order to put forward the gauge 
theory in an explicit manner. For physical intuition to the 
fiber bundle theory, Nash and Sen4 and Eguchi, Gilkey, and 
Hanson5 are helpful. The organization of this article is out
lined in the following way. 

Section II is concerned with the center-of-mass system 
for the planar triatomic molecule. It is shown that the center-
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of-mass system is made into a principal fiber bundle R4 --+ it3 

with the structure group SO(2), where the superscript dot 
means that the origin 0 is gotten rid of. This fiber bundle is 
closely related with the Hopf fibering S 3 --+ S 2. The connec
tion defined by the Eckard condition is constructed, and its 
curvature is calculated to be Dirac's monopole field on R3, 
the internal space. 

Section III shows that the complex line bundle associat
ed with the principal fiber bundle R4 --+R3 is an arena for 
quantum mechanics for the internal motion of planar triato
mic molecules. The eigenvalues of the total angular momen
tum operator assign these complex line bundles. The linear 
connection and its curvature induced from those on the cen
ter-of-mass system are discussed. The curvature proves to 
define, on the internal space Dirac's monopole field of a 
quantized strength, half the eigenvalue of the angular mo
mentum operator. The linear connection (or covariant deri
vation) shows that the internal motion is minimially coupled 
with the monopole field. Gauge transformations for local 
cross sections are discussed with introducing local coordi
nate systems. 

Section IV is devoted to the internal Hamiltonian opera
tor by which the internal motion is governed. This operator, 
acting on cross sections in the complex line bundle, is shown 
to be quadratic in the covariant derivation operator and to 
contain a centrifugal potential. Thus one understands how 
the rotation affects the internal motion. Local expressions 
are also given in the coordinates introduced in Sec. III. 

The internal Hamiltonian operators for multiatomic 
molecules in ]R3 are given in Ref. 6 only for zero total angular 
momentum eigenvalue without reference to the geometry of 
complex vector bundles in the large. 

II. THE CENTER-Of-MASS SYSTEM AS A PRINCIPAL 
fiBER BUNDLE 

A. Settings on the center-of-mass system 

Let Y I' Y2' Y3 be position vectors of particles in R2 with 
masses m l ,m2,m3, respectively. The components of Yk will 
be denoted by (y~), j = 1,2. The configuration space of a 
molecule, the system of particles, is the linear space of all the 
triples (YI'Y2,Y3); 

Qo = {Y = (YI,Y2'Y3); YkER2}. (2.1) 

We equip Qo with the inner product 
3 

K(x,y) = L mk(xkIYk)' (2.2) 
k=! 

where the parentheses denote the standard inner product 
in ]R2. 

The rotation group SO(2) acting on]R2 acts also on Qo 
in a natural manner; 

(2.3) 

The center-of-mass system Q is the linear subspace of Qo 
defined by 

Q= {yeQo; ± mkYk =o}. 
k=1 

(2.4) 

Since the condition l:mk Yk = 0 is invariant under the 

Toshihiro Iwai 965 



                                                                                                                                    

SO(2) action, Q admits the SOC 2) action, too. The induced 
inner product on Q will be also denoted by the same letter K. 

To express the action ofSO( 2) on Qo in a simple matrix 
form, we introduce a nice orthonormal system in Qo as fol
lows. 

Proposition i: Let e t and e2 be the standard basis in H2. 
Then the following triples constitute an orthonormal system 
in Qo with respect to the inner product K: 

Ct = No(et,et,e t ) , 

C2 = N O(e2,e2,e2) ; 

10 = Nt (m3e.,0, - m.e.) , 

ft = N. (m3e2,0, - m.e2) , 

h = N 2( - m 2e.,(m. + m3)et, - m2e.) , 

h = N 2( - m 2e2,(m. + m 3)e2, - m2e2); 

(2.5a) 

(2.5b) 

whereNk , k = 1,2,3, are the normalization constants given, 
respectively, by 

No = (m. + m 2 + m3)-·/2, 

Nt = (m.m3(m. + m 3»)-·/2, (2.6) 

N2 = (m2(m. + m 3)(m. + m2 + m3»)-·/2. 

Proof: To verify that (2.5) is an orthonormal system is a 
matter of calculation. The vectors Ik, k = 0, ... ,3, and ci ' 

j = 1,2, form an orthonormal basis in Q and Q 1, the orthog
onal complement of Q, respectively. 

The vectors Ik are special configurations of the mole
cule in the center of mass system. (See Fig. 1.) 

Proposition 2: Let geSO (2); 

_ (cos t - sin t) g(t) - . . 
sm t cos t 

(2.7) 

Then the action ofSO(2) on Q is expressed with respect to 
the basis {Ik} in the form 

(
g(t) ) 

g(t) , (2.8) 

where the missing matrix entries are all zero. The action on 

m3Nl e2 Xl 
-mlNlel m3Nl el x2=o .. I ~ 

X3 x2=o Xl 

fO 
-m1N1e2 X3 

f 1 

FIG. 1. Configurations corresponding to the orthonormal basis Ik' 
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Q is expressed in the same form as (2.7) with respect to the 
basis {cj }. 

Proof: Computing K( gfj,lk) to get the coefficients of 
gfj = ~akjlk results in (2.8). This ends the proof. 

It is of practical importance to understand what the or
thonormal system (2.5) means for the molecular configura
tion. Let B denote the center-of-mass vector; 

B= kt. mkYk ct. mk)-· 

2 

= L Biej • 

i=· 
(2.9) 

Then any triple Y = (Y.'Y2'Y3) in Qo is put into the usual 
decomposition 

(Y.,h'Y3) = (X.,X2,x3) + (B,B,B) , (2.10) 

where x = (X.,x2,x3) is in Q. The basis vectors ci ' j = 1,2, 
are related with (B,B,B) by 

2 Bic 
(B,B,B) = L _1 , (2.11) 

i=. No 
where No is the normalization constant given in (2.6). The 
triple x = (X.,x2,x3) is of course expressed in terms of the 
basis vectors Ik' k = 0, ... ,3: 

(2.12) 

Put another way, any configuration of the molecule is 
expressed as a linear combination of specified configura
tions Ik' 

Corollary 3: The sextuplet (BiINo,t k), j= 1,2, 
k = 0, ... ,3, serve as the Cartesian coordinates in Qo. 

ProoJ' This is clear from (2.11) and (2.12). 
To simplify notations, we introduce in R2 the complex 

vector space structure by setting 

Zk = (Xk Ie.) + i(xk le2 ), k = 1,2,3 . (2.13) 

Then we obtain, after a simple calculation, 

(2.14 ) 

t2 + it 3 = (m2(m. + m 3) )1I2(Z2 _ m.z. + mJZ3). 
m. +m2+m3 m. +m3 

Thus any vector in Q~ R4 can be treated as a pair of complex 
variables which are closely related with the Jacobi vectors 
frequently used in the multi particle system.7 Moreover, a 
straightforward calculation yields 

3 3 

L mk IZk 12 = L (t i)2 = K(x,x) , (2.15 ) 
k=. i=O 

that is, K(x,x) is equal to the moment of inertia of the mole
cule. 

B. The prinCipal fiber bundle 

We now proceed to a geometry of the center-of-mass 
system Q. From (2.8) it follows that the SO(2) action on Q 
is free if the origin is gotten rid of. Further, from (2.14) we 
see that the origin corresponds to the triple collision of the 
particles. By Q we mean the Q whose origin is excluded. 
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Then Q is diffeomorphic with R4: =:a4 - {O}. We now 
show the following theorem. 

Theorem 4: The center-of-mass system Q without the 
origin is made into a principal fiber bundle with structure 
group SO(2); 1T: Q=R4 -M =R\ M: = Q ISO(2). 

Proof: Following Greub and Petry,8 we introduce in Q 
the structure of the quaternion algebra by setting 

1II2 =h, /oJj =Jjlo =Jj, (2.16) 
I~ = -If = 1o, j = 1,2,3. 

T~e conjugate of a quaternion x = t% + '£.]= It iJj, to, 
t 'eH, is defined by 

3 

x=t%- LtiJj. (2.17) 
j=1 

Set 

E(t) =/0 cos t + II sin t. (2.18 ) 

Then the SO(2) action on Q, given by (2.8), is written as the 
left action; 

X-E(t)X. (2.19) 

Since E(t) IIE(t) = ft, invariants under the left action 
(2.19) are obtained as 

xlIx = «to)2 + (t 1)2 - (t2)2 - (t 3 )2)/1 

+ 2( - tOt 3 + t It2)!; + 2(tOt 2 + t It 3)/3· 

(2.20) 

On setting 
3 

1T(X) = xlIx = L wklk , xeQ, 
k=1 

(2.21 ) 

one has the projection 1T: Q_it3 together with 

(to (t j)2 r = ktl (W
k

)2. (2.22) 

Here we have identified :a3 with the linear subspace spanned 
by Ik' k = 1,2,3. Thus if X is restricted onS 3 C 1R4, 1Tbecomes 
the very Hopf mapping: S3_S2 (Ref. 5). This ends the 
proof. 

The quaternion structure was also used by Satzer, Jr.9 
and MeyerlO for the planar three-body problem. 
. The base manifold M = Q ISO(2), diffeomorphic with 

H3
, is called the internal space, which is so to speak the set of 

all molecule forms independent oftheir position in H2. The 
coordinate system (wk

) is an internal coordinate system; the 
bond lengths and valence angles are expressible as functions 
of Wk. 

c. The connection and curvature 

As was stated in Sec. I, the Eckart condition is closely 
related with the geometric concept of connection and curva
ture. For rigorous analysis of the Eckart condition, we have 
to start with the definition of rotational and vibrational vec
tors. From (2.19) we have the fundamental vector field II F. 
the infinitesimal generator ofthe 80(2) action on Q, as ' 

F" = E(O)X =/lx, xeQ, (2.23) 
where E( t) denotes the derivative of E( t) with respect to t. In 
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the coordinates (t i) one has 

F- l" I a /:"0 a l"3 a l"2 a 
- -~ atO +~ at l -~ at 2 +~ at3' (2.24) 

where Ik are naturally identified with a lat k. According to 
Guichardet,2 the vector field F is called rotational (or verti
callI), and the vector fields Y orthogonal to F are called 
vibrational (or horizontal8,II ); 

(2.25) 

where K" is the .inner product naturally induced in the tan
gent space T" (Q). We choose the vibrational vector fields 
Vk , k = 1,2,3, as follows: 

VI(x) = -/lxfl =t%+t11-t%-t3/3' 
V2(x) = -/lxf2= -t%+t2/1+t1j;-t%, 
V3(x) = -/IX/3=t%+tYI+t%+t13. (2.26) 
The linear subspace W".vib of T" (Q) spanned by all the vi
brational vectors at x is called the vibrational subspace. The 
assignm~nt of the vibrational subspace tox gives the connec
tion on Q which Guichardet defined,2 and is equivalent to 
that analyzed by Greub and Petry.8 

Theorem 5: The connection form (!) is given by 

(!) = lit 11-2 ( - t I dt ° + SO dt I - t 3 dt 2 + t 2 dt 3) , 

(2.27) 

where 
3 

lit 112 = L (t i)2 . 
i=O 

Proof: We identify 80(2), the Lie algebra ofSO(2), with 
R. A calculation gives 

(!)(F) = 1, (!)( Vk ) = 0, k = 1,2,3. (2.28) 

Thus, by definition, II (!) is the connection form. 
It is to be remarked that lit 112 is equal to the moment of 

inertia. Thus from (2.27) and (2.28) we see that the (!) is a 
one-form associated only with the moment of inertia and the 
angular momentum. The Eckart condition of rotationless 
constraint is then equivalent to the differential equation 
(!) = O. However, this equation is not completely integra
ble. 12 That is to say, there do not exist submanifolds of the 
center-of-mass system on which every motion is vibrational, 
i.e., the tangent vector of the motion is a vibrational vector. 
The nonintegrability is closely related with the nonseparabi
lity of rotation and vibration, as will be discussed below. 

The tangent map 1T. of the projection 1T: Q-M provides 
an isomorphism of W",vib onto T1T(,,) (M), so that the vibra
tional vector fields on Q are in one-to-one correspondence 
with vector fields on M. Let X be a vector field on M. Then a 
unique horizontal (or vibrational) vector field X· satisfying 
1T. X: = X1T(,,) is called the horizontal lift of X. Now, using 
the definition of 1T. together with (2.26), we obtain 

1T. Vk = 2 ± (ti)2 ~, k = 1,2,3. (2.29) 
i=O aw 

Put another way, !lIt 11- 2 Vk is the horizontal lift of a lawk
; 

(~kr = ~ IItll-2Vk' k= 1,2,3. (2.30) 
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The Lie brackets of these horizontal lifts are calculated in a 
straightforward manner to give 

[(~).,(~).] = - ~ lis 11-6w3F (cycl. perm.) . 
awl aw2 2 

(2.31 ) 

These equations are worth noticing; infinitesimal vibrations 
are coupled to give rise to an infinitesimal rotation. This is a 
reason why the vibration cannot be separated from the rota
tion. Equations (2.31) also mean that the equation w = 0 is 
not completely integrable (Frobenius' theorem). 12 The non
integrability leads to the curvature form. 

Let n be the curvature form of the connection w. Then 
for vibrational (or horizontal) vector fields U and Vone has 
the formula II 

n(u,V) = -w([U,V)). (2.32) 

[In Ref. 11, one finds the formula n ( u, V) 
= - ~w ( [ U, V] ), but the factor! depends on a choice of the 

definition of exterior products. ] 
Theorem 6: The curvature form defines a magnetic 

monopole field on the internal space M; 

n = !lIwll-3(w3 dwl A dw2 + Wi dw2 A dw3 

+ w2 dw3 Adw l
) , 

where (wk
) are given by (2.20) 

= (~L I (Wk)2)1/2 = lis 112. 

(2.33 ) 

and (2.21), and IIwll 

Proot Since n is a tensorial two-formll (i.e., vanishes 
for any rotational vector field), and invariant under the 
SO(2) action [note that SO(2) is Abelian], it defines a two
form on M. We denote it by the same letter n. From (2.28), 
(2.31), and (2.32), we obtain (2.33). 

D. The Induced metric on M 

Since the inner product K on Q is invariant under 
SO(2), it projects to a metric on M through 1r. For vector 
fields X and Yon M, one has unique horizontal lifts X * and 
Y*, respectively; 1r.X!' = X".(X)' etc. The induced metricB 
on M is then defined by 

B".(x) (X,y) =Kx(X*,Y*). (2.34) 

Theorem 7: The internal space M is endowed with the 
metric 

(2.35) 

Proof· Applying (2.30) and (2.34) to a /awk, k = 1,2,3, 
we obtain 

B (a a) _ ~kj 
".(x) awk' aw j - 411wll . (2.36) 

This ends the proof. 
Note that this metric is a generalization of Wilson's G - I 

matrix. 13 Since ~i = I (dWk
)2 is considered as the standard 

fiat metric on lit3 =M, the internal space is a conformally fiat 
Riemannian manifold. 

E. Local description of the connection and curvature 

In what follows we give a local description of the con
nection and curvature we have discussed so far. We intro-
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FIG. 2. Angle variables '" and ~. The arrowed lines connected by broken 
lines represent an SO( 2) orbit of a point, a circle. 

duce the curvilinear coordinates (r,O,f/J,t/J) in Q by 

SO + is I=,,[r cos(O /2)exp(i[ (t/J + f/J )/2]) , 

S 2 + is 3 =,,[r sin(O /2) exp(i [ (t/J - f/J )/2]) , 

where 

r>O, O<.O<'1r, 0<.(t/J+f/J)/2<.21r, 

- 1r<. (t/J - f/J) /2<'1r. 

The action of SO (2) on Q is then expressed as 

(2.37) 

(so + is I,S2 + is 3) ...... (eit(so + is 1),eit (s2 + is 3»), 
(2.38) 

or 

t/J ...... t/J + 2t and the others fixed. (2.39) 

Then t/J/2 is the rotation angle of the "frozen" molecule from 
an assigned position. (See Fig. 2.) 

It is of interest to note how the coordinates other than t/J 
are related to the Jacobi vectors (2.14). From (2.14) and 
(2.37), it follows that 

( mlm3 )1I21zl _ z31 =,,[r cos!!.-, 
ml +m3 2 

( 
m2(ml + m3) )1121 mizi + mJZ31 r:. ° 

Z2 - = "r sm - . 
mt+m2+m3 m l +m3 2 

(2.40) 

The f/J is the angle made by two Jacobi vectors. Moreover, the 
moment of inertia is equal to r from (2.15) and (2.37). (See 
Fig. 3.) 

From the definition of (wk
), we have 

Wi =rcosO, 

w2=rsinOsinf/J, 

w3 = rsin Ocosf/J , 

where 

r>O, O<.O<'1r, 0<'f/J<.21r. 

(2.41 ) 

Put another way, the spherical coordinates in R3 serve as 
internal coordinates for the planar triatomic molecule. 
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FIG. 3. Jacobi vectors and the angle variables", and? 

It is a key to understanding internal motions to get an 
idea of the topology of the principal fiber bundle 1T: Q ..... M. 
While Qis not a product spaceM xS I, S 1 ~SO(2), Qcan be 
covered by two pieces of product spaces. To see this, we 
consider the subsets D + and D _ of M which consist of points 
such that 0 # 1T and 0 # 0, respectively. Then Q is covered by 
1T-

1(D+) and 1T- 1(D_). We define in tum the local cross 
sections r +: D + ..... Q and r _: D _ ..... Q by 

{
So + is 1 =.,[r cos(O /2) , r +: . on D+(O #1T) , 
S2 + is 3 =.,[r sin(O /2)e -.t/> , 

(2.42a) 

r _: {SO + is 1 =.,[r cos(O /2) ei
t/>, on D _ (0 #0) . 

S 2 + is 3 = .,[r sin (0/2) , 

(2.42b) 

By the use of these sections, 1T- 1 (D +) and 1T- 1 (D _) tum 
out to be product spaces; 1T-

1 (D + ) ~D + X S 1 and 
1T- 1 (D _) ~D _ xS I. In fact, every point of 1T- 1 (D ± ) is 
expressed as eitr ± (p), peD ± ' where the product eitr ± (p) 
denotes a short form of the SO(2)~U(1) action (2.38). 
Setting t = ('" + t/J )/2 in 1T-

1 (D +) [resp. t = ('" - t/J )/2 in 
1T - 1 (D _ ) ], we recover the coordinates given by (2.37). 
Brieftr speaking, local sections r + and r _ are defined local
ly in Q by '" + t/J = 0 and", - t/J = 0, respectively. 

We proceed to the connection and curvature forms. A 
straightforward calculation using (2.27), (2.33), (2.37), 
and (2.41) results in 

w = !(d", + cos 0 dt/J) , 

n = dw = -! sin 0 dO A dt/J . 

(2.43) 

(2.44 ) 

Using (2.42) and (2.43), we obtain the local description ofw 
as follows: 

r-'+ w =!( - 1 + cos 0) dt/J, on D+ , 

r-'- w =!(1 + cos 0) dt/J, on D_ , 

(2.45a) 

(2.45b) 

where the superscript asterisk indicates the pullback. These 
are gauge potentials of the monopole field n. Their gauge 
transformation is then given by 

(2.46) 

This type of gauge transformation was effectively used for 
the monopole field by Wu and Yang. 14 

969 J. Math. Phys., Vol. 28, No.4, April 1987 

F. Remarks on classical mechanics of planar molecules 

Classical mechanics for nonrigid molecules was estab
lished in Ref. 3 in the Hamiltonian formalism. Following 
that paper, we make some remarks on classical mechanics 
for planar triatomic molecules. The phase space, to begin 
with, is the cotangent bundle T· (Q), on which the standard 
symplectic form is defined. A question as to whether or not 
the molecular motion is internal, i.e., independent of its atti
tude in the space R2, was affirmatively cleared up by using 
the reduction theory. IS That is, the reduced phase space by 
the SO (2) action is diffeomorphic with the cotangent bundle 
of the internal space, T· (M). However, this is the case only 
for planar molecules. If the molecule is in Rd (d > 2), and if 
the angular momentum is not zero, the reduced phase space 
is larger than the cotangent bundle of the internal space. 
Hence, in this case the molecular motion is not internal. 

The reduction ofT·( Q) to T·(M) ==< T· (R3
) is in prin

ciple the same as that performed in Ref. 16 for the conformal 
Kepler problem of dimension 4. As a result of the reduction, 
one finds the reduced symplectic form which is the sum of 
the standard symplectic form on T·(M) and a constant mul
tiple of the curvature form n viewed as a two-form on 
T· (M). This fact was pointed out also by Kummer. 17 

III. THE ASSOCIATED COMPLEX LINE BUNDLES 

In this section, we show that the appropriate space on 
which quantum mechanics for the internal motion of planar 
triatomic molecules should be set up is the Hilbert space of 
square integrable cross sections in the complex line bundle 
associated with the principal fiber bundle Q ..... M. 

To get an idea of the associated line bundle, we start with 
wave functions on the subset 1T- 1 (D +) of Q. Since 
1T- I (D+) ~D+ XSt, any function f(eitr +(p») on 
1T- 1 (D +) is periodic in t with period 21T. Thus we can get a 
Fourier series expansion, 

00 

f(eitr+(p») = L c~+ ) (p)eimt , 
m= -<Xl 

where c~ + ) (p) is the Fourier coefficient defined by 

1 r27T 

c~ + ) (p) = 21T Jo f(eitr + (p»)e - imt dt, peD + . 

(3.1 ) 

These coefficients are indeed functions on D+. In a similar 
manner, we may obtain functions c~ - ) (p) on D _. Since the 
internal space Mis covered by D + and D _, the pair c~ + ) and 
c~ - ) (p) should piece together an internal state of the angu
lar momentum eigenvalue m. Thus we are led to the notion 
of cross sections in the complex line bundle. 

A. The associated bundles and linear connections 

We start with the associated complex line bundle. 
Though the discussion runs in parallel with the work of 
Greub and Petry,8 we reproduce it from the viewpoint of 
reducing wave functions on Q to wave sections onMby using 
the SO(2) action. Fix an integer m and let Pm denote the 
representation of SO (2) in C given by 

Pm (it): z ..... eimt z, ZEC. (3.2) 
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Define a left action ofSO(2) on Q xC by 

Em (e(t»): (x,z) .... (e(t)x,eimt z). (3.3 ) 

This action gives an equivalence relation in Q X C. The quo
tient manifold, denoted by Q x m C, is made into the complex 
line bundle Lm = (Q X m C, 1T'm' M) via the commutative 
diagram 

QXC 
q 

QxmC .... 

PI ~ ~ 1T'm , (3.4) 

Q:::::R4 
tr .... M:::::R3 

where PI denotes the projection onto the first factor, and q is 
the natural projection. 

A complex-valued function <I> on Q is called equivariant 
with respect tOPm (Pm-equivariant, for short), nit satisfies 

<I>(e(t)x) = eimt<l>(x) , xeQ. (3.5) 

A map 0': M .... Q X m C is called a cross section in L m , if 
1T'00' = idM • Thepm-equivariant functions are in one-to-one 
correspondence with the cross sections in Lm (see Refs. 8 
and 11), as is shown below: For an equivariant function <I> on 
Q, the equivalence class [(x,<I>(x»)1 by Em is constant on 
each 80(2) orbit in Q, and hence it becomes a cross section 
in Lm through the diagram (3.4). Conversely, given a cross 
section 0' in L m , one can define an equivariant function on Q 
by 

<I>.,.(x) = q,,-l(q(1T'(X») , 

where qx: C ..... 1T,;; 1(1T'(X») denotes the isomorphism restricted 
fromq on the fibers. Note that q£(t},,(z) =q" (e- imt z). We 
mean by q! the one-to-one correspondence from the cross 
sections in Lm to the equivariant functions on Q. 

We now have to realize what the q! does mean for mo
lecular dynamics. Recall that the rotation group 80(2) has 
the infinitesimal generator ~given by (2.24). Thx total an
gular momentum operator F is then defined by F = - iF. 
Let <I> be a smooth equivariant function on Q. Then one has 
from (3.5) 

A 

F<I> = m<l> , (3.6) 
"'-

that is, <I> is an eigenfunction of F with the eigenvalue m. 
Conversely, we understand that Eq. (3.5) is the exponentia
tion ofEq. (3.6). Hence the eigenspace corresponding to the 

"'-
eigenvalue m of the total angular momentum operator Fis in 
one-to-one correspondence with the space of cross sections 
in Lm. Therefore, the correspondence q! - I is thought of as 
a reduction of the space of wave functions on Q to the eigen
space of the total angular momentum operator, and hence 
the introduction of the complex line bundle is a geometric 
consequence of the conservation of the total angular mo
mentum. We may consider this reduction process as a quan
tum version of the reduction theorem IS applied for classical 
molecular mechanics. This reduction of the space of wave 
functions is easy to generalize to the case of multiatomic 
molecules in Rd. We notice in addition that in a local sense 
the equivariant function is a term in the Fourier expansion 
(3.1). Thus q! - I is the operation of picking up the Fourier 
coefficient. 
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We proceed to the linear connection on Lm induced 
from the connection on the principal fiber bundle Q -+ M. Let 
X be a vector field on M and X * its horizontal lift; 
1T'*X!' = X.,(x)' Then for a cross section 0' in Lm its covar
iant derivative with respect to X is defined by 

VXO'=q!-IX*(q!O'). (3.7) 

The operator V is called the linear connection, which is lin
ear in X and 0', and satisfies for arbitrary functions I the 
conditions 

VfXO' = IV xO' , 

V x 10' = (XI)O' + IV xO' . 

(3.8) 

(3.9) 

The curvature of V is defined for vector fields X and Yon M 
by 

R(X,y)O'= [Vx,Vy]O'-V[X,YjO'. (3.10) 

By (3.7), R is written also as 

R(X,Y)O'=q!-I([X*,Y*) - [X,Y)*)(q!O'). (3.11) 

Theorem 7: The curvature R of the linear connection V 
on Lm takes the form 

R(X,Y)O'= -im'o(X,Y)O', mel, (3.12) 

where .0 is the monopole field given by (2.33). 
PrOOF Applying (3.11) to a law\ k = 1,2,3, and using 

(2.31) and (3.6) with <I> = q!O', we have 

R (~I ' a~ )0' = - imw
3
0'1211wll

3 
(cycl. perm.). 

(3.13) 

Thus we have (3.12), as is wanted. 
We make some remarks on R which defines a two-form 

on M. 8ince the de Rham cohomology class [R) 121T'i is inte
gral, 

- R=m 1 1 
21T'i s' ' 

(3.14) 

and since M::::: Ie is simply connected, a theorem of Kos
tant l8 shows that the bundle Lm and the connection V whose 
curvature coincides with R are unique up to strong isomor
phisms. Equation (3.14) also means th~t the eigenvalues of 
the total angular momentum operator F are twice the quan
tized monopole strengths. Indeed the monopole strength is 
given by (3.14) with the denominator replaced by 41Ti. 

In conclusion we touch upon a bundle metric on Lm' 
The complex line bundle Lm is naturally endowed with a 
Hermitian metric. Let 0' k' k = 1,2, denote cross sections in 
Lm. Then the Hermitian metric is defined for 0'1 and 0'2 by 

(0'110'2)(1T'(X») = q!O'I(x) q!0'2(X) , (3.15) 

where the bar indicates the complex conjugate. The right
hand side of (3.15) is of course invariant under the 80(2) 
action. It is easy to see that the linear connection V is a metric 
connection; for any vector field X on M, one has 

X(O'd0'2) = (VXO'd0'2) + (O'dVX0'2)' (3.16) 

With this Hermitian metric, we may think of the Hilbert 
space of square integrable cross sections in Lm' But before 
doing so, we must deal with the volume element on M. 
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B. The inner product for cross sections 

This section is concerned with the inner product for 
cross sections in Lm' The volume element on M for integra
tion must be the one which is reduced from the standard 
volume element on the configuration space Qo; dQo 
= dYI /\ dY2 /\ dY3' where dYk' k = 1,2,3, stand for 

dyl/\dYi. 
The volume element d~o on Qo defined by the inner 

product K is related with the standard one by 

d~o = m1m2m3 dQo. (3.17) 

We recall here that any triple yin Qo is written, with respect 
to the orthonormal frame {CJ,fk}' j = 1,2, k = 0, ... ,3, as 

2 B jc. 3 k 

Y = L -' + L t'lk . (3.18) 
J= 1 No k=O 

Accordingly, the volume element d~o is expressed in terms 
ofBjandtkas 

d~o = N 0- 2dB 1 /\ dB 2 /\ dt 0 /\ dt 1 /\ dt 2 /\ dt 3 

= N 0- 2 dB 1 /\dB 2 /\dB 2 /\d~, (3.19) 

where d~ = dt 0 /\ ••• /\ dt 3 is the volume element on Q de
fined by K. Therefore, separating off the center-of-mass co
ordinates, we obtain the volume element on Q; 

dQ = 11- d~, 11- = ktl mkCUI mk)-I (3.20) 

To bring out the volume element on M, it is of practical 
use to express d~ in terms of the curvilinear coordinates 
introduced in Sec. II E. A straightforward calculation yields 

d~ = ft, r sin 0 dt/! /\dr /\ dO /\ dt/J. (3.21) 

We are now ready to obtain the following theorem. 
Theorem 8: The inner product of cross sections Uk' 

k = 1,2, is given by 

JM (u1 Iu2 ) dM= L q!UI q!u2dQ, 

where dM is defined by 

dM: = (11-17'/4)rsin Odr/\dO/\dt/J 

= (11-17'/4I1wll> dw3 /\dw2 /\dw l 
• 

(3.22) 

(3.23) 

Proof: From (3.21) the inner product for Pm-equivar
iant functions <l>k = q!Uk' k = 1,2, is expressed in the form 

r <l>I<I>2dQ =....!:!:....-[" dt/!i <l>I<I>2rsinOdrdOdt/J JQ 16 0M 

= 11-17' i <1>1<1>2 r sin 0 dr dO dt/J . 
4 M 

(3.24) 

Here we have used the fact that <I> 1 <1>2 is constant in t/!. Thus 
the appropriate volume element on M is to be given by 
(3.23). From (3.15) and (3.24) withq!uk = <l>k' k= 1,2, 
we obtain (3.22). We note here that the volume element 
defined by the Riemannian metric (2.35) is given by 
(4I1wll)-3/2 dw3 /\dwl /\dw1

, which is different from dM. 

C. Local description of the linear connections on Lm 

In what follows we give a local description of the linear 
connection V on Lm in order to get an idea of how the "gauge 
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potential" of the monopole field mn is encompassed within 
the linear connection. Set 

\fI+ =exp(im[(t/!+t/J)/2]), on 17'-I(D+), 

"'_ =exp(im[(t/!-t/J)/2]), on 17'-I(D_). (3.25) 

These are local Pm -equivariant functions on account of 
(2.39). By U+ and u_ we mean the corresponding local 
cross sections in Lm; q! u ± = '" ± . 

We need first to get the horizontal lifts of a / aa\ 
(ak) = (r,O,t/J). Making use of (2.43), one readily obtains, 
from m( (a /aa k

) *) = 0, 

( a)* a ( a )* a 
ar = ar' ao = ao ' (3.26) 

(~)* = ~ -cosO :t/!' 

We are now in a position to compute the covariant deriva
tives of u ±' using the definition (3.7). We have, in fact, 

ViJ/iJ'U ± = ViJ/iJ8U ± = 0, 

ViJ/~u ± = - (im/2)( =f 1 + cos O)u ± • 
(3.27) 

For arbitrary local cross sections f+u+ (resp. f_u_) on 
D + (resp. D _ ), their covariant derivatives are given as 

ViJ/~(f±U±)=(~ -C;)(=f 1 +COSO»)f±U±. 

(3.28) 
(+) 

For notational convenience we introduce the operators V", 
(-) 

and V", by 

'V",) f ± = (~ - C; )( =f 1 + cos O»)f ±. (3.29) 

These equations are interpreted as the minimal coupling. In 
fact, the terms (m/2) ( =f 1 + cos 0) are the t/J component of 
the gauge potentials of the monopole field 

mn = - (m/2)sin 0 dO /\dt/J, in D ± . (3.30) 

We now discuss gauge transformations on D+nD_. 
From (3.25) we have e - im",,,, + = '" _ on 17'-1 (D + ) 

n17'-I(D_), and hence e-im",u+ = u_ on D+nD_. Sup
pose that a local section on D + nD _ is expressed as f +u + 
= f_u _. Then we have the usual gauge transformation 

f- =eim"'f+, on D+nD_. (3.31) 

Applying (3.29) for f ± ' we obtain 

(3.32) 

which means the tensor property of the covariant derivative. 
In conclusion we are to link the local section f + to the 

Fourier coefficient c~ + ) of (3.1) and to get the covariant 
derivative (3.29) in an elementary manner. 

As we pointed out in Sec. II E, 17'-1 (D +) is diffeomor
phic with a product space D + X S I, so that the local coordi
nates in 17'-I(D +) are (r,O,t/J,t). Ifwemakea transformation 
t = (t/! + t/J)/2, we get the coordinates given in (2.37). 

The connection form m is then put into 

m = !(2 dt + ( - 1 + cos O)dt/J). (3.33) 
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Hence the horizontal lift of a lar/J, a vibrational vector on 
1T-

I (D +), is given by 

( a )* a 1 a ar/J = ar/J -"2(-I+cosO) at' (3.34) 

The Fourier term c:" + ) eimt of (3.1) is of course a local 
equivariant function. The 'I' + in (3.25) is nothing but eimt 

with t = (t/J + r/J ) 12. Thus c:" + ) may be identified with 1+. 
Operating c:" + ) eimt with (a I ar/J ) *, we obtain the covariant 
derivative of c:" + ); 

(
aim (1 Ll») (+) --- - +cosu c . ar/J 2 m 

(3.35) 

The similar calculation can be done also for c:" - ). 

IV. THE INTERNAL HAMILTONIAN OPERATOR 

In this section we obtain the internal Hamiltonian oper
ator acting on the cross sections in the complex line bundle 
Lm. The internal Hamiltonian operator should be reduced 
from the usual Hamiltonian operator for the three-body sys
tem. 

A. The laplacian 

We start with the kinetic energy part of the Hamiltonian 
operator for the planar triatomic molecule. Recall that the 
configuration space Qo is endowed with the inner product 
(2.2). Then we note that the kinetic energy operator 

1 3 I (a)2 --L- -
2 k= I mk aYk ' 

(4.1 ) 

where a laYk, k = 1,2,3, denote the gradient operators, is 
- ! times the Laplacian ao defined by the metric K. Hence, 

in terms of the orthogonal coordinates (B ilNo,s k), j = 1,2, 
k = 0, ... ,3, the Laplacian ao takes the form 

ao =N~ it] (a!ir + kto (a;k r· (4.2) 

Separating off the first term of the right-hand side, we have 
the Laplacian a on the center-of-mass system Q; 

(4.3) 

Here we have tacitly assumed that the linear momentum 
operator has zero eigenvalue. 

We now wish to break up the Laplacian a into the vibra
tional and rotational parts. To this end, we first express 
alas k as a linear combination of F and Vk given in (2.24) 
and (2.26). As Ik are identified with a las \ we obtain, on 
account of the inner product of Ik and Jj (Vo = F), 
j=0, ... ,3, 

a:o = IIsll-2( - slF + sOVI - S3V2 + S2V3 ) , 

a~ I = 11511-2 (5 of + 5 ] VI + 52 V2 + 53 V3) , 
!> (4.4) 

a: 2 = IIsll-2( - s3F - S2VI + SlV2 + sOV3 ) , 

a;3 = IIsll-2(S2F- S3VI -soV2 +SIV3)· 
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If (4.4) is substituted into (4.3), the Laplacian a will be 
expressed in terms of F and Vk , but this procedure is awk
ward. We consider, instead, the functional (twice the kinetic 
energy) 

i - 3 a2cl> 
(cl>1 - acl»Q: = - f-t cl> L --k-2 d~, 

Q k=Oa(S) 

(4.5) 

where cl> is a smooth complex-valued function on Q. Insert
ing (4.4) into (4.5), we obtain 

(cl>1 - acl»Q 
3 

= (lIsll-2F<1>IF<I»Q + L (lIsll-2Vk cl>lVk cl»Q' 
k=] 

(4.6) 

This equation means that the kinetic energy is separated into 
the rotational and vibrational energies; the first term in the 
right-hand side is rotational and the rest vibrational. How
ever, this fact does not imply that rotation and vibration are 
not coupled as motions. The coupling appears rather in Eq. 
(2.31). 

Theorem 9: The kinetic energy operator - a/2 on the 
center-of-mass system Q is separated into the rotational en
ergy and vibrational energy operators; 

3 

a = IIsll-2F2 + L Vk (1Isll-2Vk ) • (4.7) 
k=1 

Prool: Integration of (4.6) by parts provides the Lapla
cian a in terms of F and Vk • It is here a great convenience to 
have the formulas 

(Jjcl>Icl»Q = (cl>1 - Jjcl»Q' j = 0, ... ,4, (4.8) 

where Vo = F. These formulas are easy to show. Applying 
(4.8) to (4.6), we obtain (4.7). 

B. The Hamiltonian operator In Lm 

We are now in a position to derive the internal Hamilto
nian operator in Lm from the usual Hamiltonian operator in 
L 2 (Q). From the discussion in the last section, the Hamilto
nian operator in L 2( Q) is given by 

H= -!a+u, (4.9) 

where a is the Laplacian defined by (4.3) or (4.7), and Uisa 
potential function depending on the internal coordinates 
only. Let cl> be a P m -equivariant function of compact support 
on Q, and 0' the corresponding cross section in L m , q! 0' = cl>. 
Then the internal Hamiltonian operator H m is defined 
through 

(cl>IHcl»Q = fM (O'IHmO') dM. (4.10) 

Theorem 10: For a planar triatomic molecule, the states 
of internal motions are described as cross sections in the 
complex line bundle Lm. The internal Hamiltonian operator 
H m acting on the cross section is given, with respect to the 
volume element (3.23), by 

13 m 2 

Hm = -"24I1wllk~1 Vz + 211wll + u. (4.11 ) 
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Proof" The left-hand side of (4.10) can be written out by 
using the results in the previous sections. Applying (4.7) to 
<I> and using (2.30), (3.6), (3.7), and (3.22), we obtain 

(<I>la<l»Q = i (0"1 ( -~ + 411wll ± V~)O"\ dM, 
M\ IIwll k=1 J 

(4.12) 

where V k' k = 1,2,3, stand for the covariant derivation with 
respect to a I awk; 

VkO" = q! -1(:Wk)* q!O" 

=q!-I(~ IIsll-2Vk)q!0". (4.13) 

For the potential function U, we have 

(<I>IU<I»Q = J)O"IUO") dM. (4.14) 

From (4.12) and (4.14), the internal Hamiltonian operator 
turns out to be (4.11). This ends the proof. 

We make a remark on H m. If we were allowed to take a 
volume element 411wlldM = 1l1T dw instead of dM, we would 
obtain an operator 

1 3 2 (mI2)2 U 
-2 k.f:1 Vk + 211wll2 + 411wll ' (4.15) 

which would describe states of a charged particle moving in 
the presence of Dirac's monopole field and the potential, the 
sum of the second and third terms. This operator with 
U = - k 14, k> 0 a constant, is the Hamiltonian operator 
for a generalized hydrogen atom. 19 

c. Local description of Hm 

We wish to express H m in the internal coordinates 
(r,O,¢». We start again with the Laplacian a. A straightfor
ward calculation gives a description of the Laplacian (4.3) 
in the form 

(4.16) 

where a3 is the standard Laplacian on the three-sphere S 3. If 
we take into account F = 2 a I a1/!, the Laplacian (4.16) is 
broken up into the rotational and vibrational parts; 

a=--+4r-+8-+- --+cotO-4 a2 a2 a 4 [ a2 a 
r a~ ail ar r ao 2 ao 

+-- --cosO- . 1 (a a )2] 
sin2 0 a¢> a1/! 

( 4.17) 

This expression corresponds to (4.7); the first term in the 
right-hand side is the rotational part, and the rest is the vi
brational part. We note that the vibrational part can be ex
pressed in terms of the horizontal lifts (a lar)*, (a laO)·, 
and (a I a¢> ). on account of (3.26). 

We here take the local Pm -equivariant function'll + and 
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the corresponding local cross section 0"+ in Lm , as we con
sidered in Sec. III C. Let 1+0"+ be any local section. Apply
ing (4.17) toq!/+O"+, and using (3.27), we obtain 

aq!/+O"+ 

= [_ m
2 
+4r~+ 8~+'±'(£+cotO~) 

r ail ar r ao 2 ao 

++(~_jm( -1 + cos 0»)2]/+q!0"+ . 
r sm 0 a¢> 2 

( 4.18) 

On supposing that 1+ has its support in D+, the internal 
Hamiltonian operator H';:-, locally defined on D+, are ob
tained through (4.10). A straightforward calculation to
gether with (4.18) gives 

(q!(/+O"+)IHq!(/+O"+»Q = JM 1+ H';:- 1+ dM, 

( 4.19) 

where 

H+ = -- 4r-+8-+- --+cotO-1 [a
2 

a 4 ( a
2 

a ) 
m 2 ail ar r ao 2 ao 

+_4_(~_jm( -1 + cos 0»)2] 
r sin2 0 a¢> 2 

2 

+~+U. 
2r 

(4.20) 

The H ,;:- is a local description of H m given by (4.11). The 
first term -! [ ... ] is the kinetic energy operator coupled 
with the monopole field (3.30), and the second term is the 
centrifugal potential, where r is the moment of inertia. The 
coupling and the centrifugal potential disappear at the same 
time when the angular momentum is zero (m = 0). 

The internal Hamiltonian operator H ;;; , locally defined 
on D _, is obtained in the same manner. The gauge transfor
mation in the intersection D + nD _ is easy to show. Let 
1+0"+ =1_0"_ onD+nD_. Then from the identity 

(q!(/+O"+) IHq!(/+O"+»Q 
= (q!(/_O"_)IHq!(/_O"_»Q' 

one obtains 

(4.21) 

If m = 0, the complex line bundle becomes trivial, and 
the operator (1/4r)H ,;:- = (1/4r)H;;; in R3 is a standard 
Hamiltonian operator with a potential U 14r. This is a special 
case of (4.15). The reduction procedure for obtaining H m 

with m = 0 was already used in principle in Ref. 20. 
In conclusion, we remark that in his paper21 Smith dis

cussed the planar three-body problem in the limit of weak 
interaction (U = 0) by using the SO( 4) action on Q=R4

, 

but the internal motion was out of his scope. 

D. The outlook 

Though we have concentrated on the planar triatomic 
molecule, our method is easy to generalize to the multiato
mic molecule. In fact, recall that the center-of-mass system is 
made into a principal fiber bundle with the rotation group as 
the structure group, then quantum mechanics of the internal 
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molecular motion should be set up on the complex vector 
bundle associated with the principal fiber bundle with re
spect to a unitary irreducible representation of the rotation 
group. The internal Hamiltonian operator can be obtained in 
the same manner as we have used in this section. In Ref. 6, 
we have already treated the internal Hamiltonian operator 
for the n-body system in R3 under the condition that the 
angular momentum operator has zero eigenvalue, without 
reference to the geometry of complex line bundles. Our prob
lem is then reduced to working out the topology of the inter
nal space on which the complex vector bundle is construct
ed. The quantum three-body problem 7 in R3 is reinvestigated 
from our viewpoint. 22 
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Analytical estimation of critical parameter values for bound states of 
screened Coulomb potentials 

Gerald Rosen 
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As a consequence of the virial theorem and Hellmann-Feynman relation, the ratio of the 
kinetic energy to the derivative ofthe total energy, A(A) == T(A)/E'(A), is stationary and 
equal to the critical parameter value Ae at A = Ae: E(Ae) = O:::} A' (Ae) = 0 and A(Ae) = Ae' 
The cubic approximation to the latter equation yields positive roots within 3.02% and 0.33% 
of the exact Ac values for the exponential and exponential-cosine screening functions, 
respectively. An alternative estimation formula for Ae is also presented and shown to give a 
value within 0.19% of the exact Ae value for the exponential screening function. 

I. INTRODUCTION 

Hamiltonians associated with attractive screened Cou
lomb potentials arise in many areas of quantum physics and 
have been of considerable recent interest. 1 By employing 
convenient physical units,2 such Hamiltonians are express
ibleas 

H = - !V2 
- (l/r)/(Ar), (1) 

where the screening function/CAr) and reciprocal screening 
length A are fixed by the normalization conditions at 
r== (x2 + y2 + r) 1/2 = 0, 

/(0) = 1, /,(0) = - 1, (2) 

in which/, (5') =.d/(5') / d5'. Particular physical importance is 
attached to atomic, nuclear, and solid-state systems that fea
ture the exponential screening function (ESF), 

/(Ar) = e- AT (ESF) (3) 

and the exponential-cosine screening function (ECSF), 

/(Ar) = e- AT cosAr (ECSF). (4) 

Generally, the Hamiltonian (1) admits one or more bound 
(square-integrable, negative energy) eigenstates for 0 ~A 
<Ac, i.e., non-negative values of the parameter A less than a 
certain critical value Ae. The latter critical parameter value 
has been determined accurately by numerical computation 
in the case of (3) and (4) as3

,4 

Ae = 1.1906 (ESF), (5) 

Ae = 0.7205 (ECSF). (6) 

For values orA greater than (5) or (6), the Hamiltonian ( 1 ) 
has a strictly positive energy spectrum with no bound state 
for either screening function (3) or (4), respectively. 

The analytical estimation of critical parameter values 
for screened Coulomb potentials has posed a mathematical 
accuracy problem when approached via traditional meth
ods. I For example, a basic (one-parameter) Rayleigh-Ritz 
variational procedure for the estimation of ( 5) or (6) fails to 
produce values with better than 10% accuracy, as discussed 
in Appendix A. Although more complicated analytical pro
cedures have produced closer estimates for Ac values, I the 
comparisons with exact numerical values [such as (5) and 
( 6 ) ] shows that the latter analytical methods do not general
ly yield approximate values with an accuracy better than 

about 2% or 3%, notwithstanding considerable technical 
complexity.5 

The present communication reports a new practical ap
proach to the analytical estimation of critical parameter val
ues for screened Coulomb potentials. By introducing and 
performing an approximation evaluation of the function 
A(A) defined below in (12), the estimates (22) and (23) are 
obtained for (5) and (6) in the cases of the screening func
tions (3) and (4). On the basis of the accuracy evident in the 
latter examples, this logically simple and easily applied pro
cedure can generally be expected to yield estimates for criti
cal parameter values within 3% of the exact values. 

II. PROPERTIES OF THE FUNCTION A(}") 

Let E(A)=.(H) = T(A) - (r-':f(Ar» denote the 
ground state energy eigenvalue for the Hamiltonian (1), 
where T(A) =. ( - ~ V2) is the ground state kinetic energy 
expectation value (depending on A through the energy ei
genstate's dependence on the parameter). As a consequence 
of the virial theorem ([ x·V,H]) = 0, one has 

- 2T(A) + «(r-':f(Ar) -A/'(Ar»)} = 0, (7) 

while the Hellmann-Feynman relation takes the form 

dE(A) ==E'(A) = _ (/,(Ar)}. (8) 
dA 

Hence by combining (7), (8), and the definition of E(A) 
(Ref. 6), one finds that the energy eigenvalue and kinetic 
energy expectation value are simply related by a Legendre 
transform: 

AE'(A) -E(A) = T(A). (9) 

From the first normalization condition in (2) it follows 
that the ground state energy eigenvalue of ( 1) is the Schro
dinger hydrogenic value for A = 0, i.e., E(O) = -!. More
over, the second normalization condition in (2), in combi
nation with (8), implies thatE'(O) = 1. Hence, in general, 
one has 

( 10) 

( 11) 

by virtue of (9). Since Ae is defined as the smallest positive 
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valueforwhichE(Ac) = 0, it follows from (9) that the ratio 

A(A)=T(A)IE'(A) =A - [E(A)IE'(A)] (12) 

is stationary and equal to Ac at A = Ae: 

A' A -~[A- E(A)]I = E(Ae)E"(Ac) 
( c) - dA E '(A) A = Ac [ E ' (Ae )] 2 = 0, 

(13) 

(14) 

In the cases of (3), (4) and similar forms for the screening 
function, the second derivative of (12) at A = Ae , 

A" (Ae) = E" (Ae )IE' (Ac), is negative because E" (Ae) 
< 0, and thus A (A) is a maximum at A = Ae. 

By expanding the final member of (12) in a Maclaurin 
series about A = 0, one obtains 

A(O) =!, N(O) = -!E" (0), 

A"(O) =E"(O) + [E"(0)]2_!E"'(0), (15) 

A"'(O) =2E"'(0) - 3[E"(0)]2[1 +E"(O)] 

+3E"(0)E"'(0) -~E""(O), 

where use has been made of the conditions E(O) = -! and 
E'(O) = 1 which derive from (2) and are manifest in (10). 
The higher-order derivatives of E(A) at A = 0 appearing in 
( 15) are obtainable directly from (8) or by exact perturba
tion-theoretic analysis for a prescribed screening function. 
In the cases of (3) and (4), one readily evaluates N (0) , 
AH(O), and Am(O) in (15) and thereby obtains 

A 

A(A) = A(A) + O(A 4), (16) 

where to order A 3, 

A 

A(A)=1+iA-jA,2+M 3 (ESF), (17) 

A(A) = 1 + ¥ 2 - ¥ 3 (ECSF), (18) 

for the two cases, respectively. 

III. ESTIMATION OF Ae BY THE CUBIC 
APPROXIMATION FORMULA A(ie)=ie 

As expressed by ( 13) and ( 14), the stationary character 
of A(A) aboutA = Ae suggests that the cubic approximation 

A 

to A (A), introduced as A (A) in (16), may yield an accurate 
estimate for Ac as the relevant root of the equation 

A(lc )=le • (19) 

Indeed, for the screening functions (3) and (4), substitution 
of the cubic approximations (17) and (18) into (19) pro
duces 

1- a-t - i1 ~ + M ~ = 0 (ESF), (20) 

i-1c+¥;-¥~=0 (ECSF), (21) 

with the relevant (smallest positive) roots 

1c = 1.1547 (ESF), (22) 

1c = 0.7181 (ECSF). (23) 

The ESF critical parameter estimate (22) is 3.02% below 
the exact value (5), while the ECSF critical parameter esti
mate (23) is only 0.33% below the exact value (6). Hence 
for purposes that do not require high accuracy, the analyti
cal estimation of critical parameter values can be performed 
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by employing formula (19), the cubic approximation to 
(14). An alternative (more specialized) analytical approxi
mation formula that works very well for estimation of the 
ESF critical parameter value is derived and applied in Ap
pendixB. 
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APPENDIX A: APPROXIMATION FOR Ae BY A 
RAYLEIGH-RITZ VARIATIONAL PROCEDURE 

If one computes all expectation values with respect to 
the Rayleigh-Ritz trial form for the normalized ground state 

(AI) 

in whichK is a disposable parameter, the virial theorem (7), 
the Hellmann-Feynman equation (8), and the implied 
equations [(9)-( 15)] remain valid as exact relations. In 
fact, the Rayleigh-Ritz condition for K = K(A), 

with 

aE =0, 
aK 

E=E(A,K)= f t/J*Ht/Jd 3x 

(A2) 

(A3) 

is identical to the virial statement (7), because both equa
tions pertain commonly to the invarlance of the energy ex
pectation value under the spatial dilatation transformations 
7-- (1 + e)7. With'xc defined as the smallest positive root of 
the equation 

E ('xc.K('xcl = 0, (A4) 

one finds 

'xc = 1.0000 (ESF), 

,xc = 0.6437 (ECSF) 

(AS) 

(A6) 

for the screening functions (3) and (4). The crude approxi
mationsshownin (A5) and (A6) are below the correspond
ing exact values (5) and (6) by about 16.0% and 10.7%, 
respectively. Here the loss of Rayleigh-Ritz accuracy occurs 
in part when the root of (A4) is extracted, the slope function 
aElaA IA=-tc=E'('xc) being a fraction of unity in either 
case, viz. 

E'('xc) =0.1250 (ESF), 

E'('xc) = 0.4071 (ECSF). 

(A7) 

(A8) 

APPENDIX B: ALTERNATIVE ESTIMATION FORMULA 
FORAe 

For either screening function (3) or (4), the upper 
bound defined by 

M= max {A -lln([E'(A)]-I)} 
O~A~Ac 

is expressible as 

M=Ac-1ln([E'(Ac)]-I) «2) 

(B1) 

(B2) 

as shown by straightforward consideration of the forms of 
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E ' (A) in the two cases.7 The differential inequality associat
ed with (Bl), 

M~A -Iln([E'(A)]-I) (O~A~Ac) (B3) 

can be rearranged and integrated subject to E(O) = - ~ to 
yield 

E(A) ~ -! +M-l(1- e- MA
). (B4) 

By setting A = Ae in (B4) and recalling thatE{Ae ) = 0, one 
finds 

Ac ~H 1 - E'{Ae)] -Iln([ E'(Ae)] -1), (B5) 

where M has been eliminated by employing (B2). If one 
replaces E' (Ae) by the Rayleigh-Ritz approximation 
E"(,le), the right side of (B5) produces the quantity 

1c =![1- E"(,le)] -Iln([E"(,lc)] -1), (B6) 

which can be expected to approximate Ae. Indeed, for the 
ESF and ECSF Rayleigh-Ritz values (A7) and (A8), for
mula (B6) yields 

1c = 1.1883 (ESF), (B7) 

1e = 0.7579 (ECSF). (B8) 

The ESF critical parameter estimate (B7) is only 0.19% 
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below the exact value (5), while the ECSF critical parameter 
estimate (B8) is 5.19% above the exact value (6).7 

'J. Piepenbrink, J. Math. Phys. 13, 1825 (1972); P. C. Hemmer, ibid. 14, 
1140 (1973); R. Dutt, Phys. Lett. A 77, 229 (1980); J. Killingbeck and S. 
Galicia, J. Phys. A 13, 3419 (1980); V. L. Eletsky, V. S. Popov, and V. M. 
Weinberg, Phys. Lett. A 84, 235 (1981); C. S. Lai, Phys. Rev. A 23, 455 
(1981); 26, 2245 (1982); A. Ray and P. P. Ray, Phys. Lett. A 83,383 
(1981); R. Dutt and Y. P. Varshni, J. Math. Phys. 25, 2563 (1984), and 
works cited therein. 

2Here physical units are prescribed such that If = m and Ze2 = I for an 
atom that has nuclear charge + Ze; hence the screening length A -, is 
measured in units 1i2/mZe2 and the energy E in units mZ 2e

4/1i2
• 

'R. N. Kesarwani and Y. P. Varshni, J. Math. Phys. 19, 819 (1978). 
40. Singh and Y. P. Varshni, Phys. Rev. A 28, 2606 (1983). 
'However, by applying the necessary condition on potentials for bound 
states [G. Rosen, Phys. Rev. Lett. 49, 1885 (1982)] 
fl V 1"2 d'x > (~)3I2,r/4 to the ESF form with V = - r-'e- A" one ob

tainsA < 1.2138, an immediate upper bound only 1.95% greater than (5). 
6Energy estimations based on the virial and Hellmann-Feynmann rela-
tions have been made previously; see, e.g., G. Rosen, Phys. Rev. A 20, 
1287 (1979), and works cited therein. 

7BecauseE" (0) = o for the ECSF shown in (4), thecurly-bracketedquan
tity in (B I) vanishes at A = 0 for the ECSF case. On the other hand, 
E" (0) = - ~ for the ESF shown in (3), and the curly-bracketed quantity 

in (BI) remains fairly close to M over the range 0:0;,1 :0;,1,. This is why 
(B7) is much closer to (5) than (B8) is to (6). 
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A homogeneous isotropic dielectric body, placed in a uniform external electric field, will 
acquire a polarization per). If the body is an ellipsoid then P is uniform. A proof is presented 
showing that only ellipsoidal bodies have this property. 

I. INTRODUCTION 

Let !!It be a region of space filled with a homogeneous 
isotropic dielectric. When placed in a (previously) uniform 
external electric field Eo, the region will acquire a polariza
tion per) and an induced electric field E; (r). If!!lt is a sphere 
then P is uniform and parallel to Eo. If !!It is an ellipsoid then 
P is also uniform; however P is parallel to Eo only if Eo lies 
along one of the principal axes of the ellipsoid. I 

Suppose that !!It has the property that it acquires a uni
form polarization P under the influence of an arbitrary (pre
viously) uniform external electric field Eo. We know that all 
ellipsoids (with spheres as a special case) have this property. 
Apparently it is a "folk theorem" that !!It must be an ellip
soid.2 A recent step forward toward proving this theorem is 
due to Zapolsky. 2 He considers a family of regions !!It whose 
bounding surfaces are given by 

(x/a)k + (y/b)k + (Z/c)k = const, 

k = 2,4,6 .... Zapolsky then shows that, for this family, !!It 
has the desired property only for k = 2 (Le., if !!It is an ellip
soid). 

The purpose of this article is to supply the proof that !!It 
must be an ellipsoid. To accomplish this, we first define a 
tensor a which essentially relates P to E i • We then show 
that, for a given a, the shape of !!It is unique. Since an ellip
soid is known to be one possible such shape, it follows that !!It 
must be an ellipsoid. 

II. UNIQUENESS PROOF 

Consider a dielectric object having a uniform isotropic 
permittivity and occupying a region of space !!It. We assume 
that this object has the property of acquiring a uniform po
larization P under the influence of any externally applied 
uniform electric field Eo. There exist three mutually perpen
dicular directions such that P is parallel to Eo; we take these 
to be the x, y, and z axes. 

The total electric field E is the sum of the applied field Eo 
and the induced electric field Ei' 

E=Eo+Ei' (1) 

The induced electric field E;o which is uniform within !!It, is 
the electrostatic field due to the volume charge distribution 

Pi = - V·P. (2) 

Since P is uniform within !!It and vanishes outside !!It, this 
volume charge distribution is equivalent to the surface 
charge distribution 

a i =P·n, (3) 

where n is the unit outward normal to the surface of !!It . 
Suppose Eo = EO! is in the positive x direction. Then 

P = P I is in the positive x direction and Ei = Ell is in the 
negative x direction (within !!It). Let Vii (r) be the potential 
associated with this induced electric field 

Eil = - VVi!' (4) 

On the one hand, we can calculate V;I from the induced 
charge distribution ail = P I·n = Plion, 

f ail (s) f iod As 
Vii (r) = --- dAs = PI ---, 

Ir - sl Ir - sl 
(5) 

where d As = n dAs is the vectorial surface area element. On 
the other hand, since Eil is uniform and in the negative x 
direction, Vii must be a linear increasing function of x (with
in !!It), 

Vii = PI (alx + /31)' a l and/31 constants. (6) 

Here the positive factor PI has been inserted for convenience 
and al >0. From Eqs. (5) and (6) we have (dividing by PI 
and multiplying by i) 

f iiod As 
--= (alx + /31)i (1'E!!It). 
Ir - sl 

(7) 

Similar results hold if Eo is in the positive y or z directions. 
Adding these three relations and making use of the fact that 
ii + jj + kk = I (the unit tensor), one obtains 

f dAs 
--=aor+a (1'E!!It). 
Ir-sl 

Here 

a = alii + azjj + a3kk, 

13= /3li + /3~ + /33k. 

(8) 

(9a) 

(9b) 

Note that both the positive definite symmetric tensor a and 
the vector a are independent ofr. In Eq. (8) the aor term 
may be transformed away by shifting the origin: 
r' = r + a-loa. Dropping the prime, 

f dAs --= aor (rE!!lt). 
Ir - sl 

( 10) 

We shall refer to this new origin as the "center C." Using 
Gauss' theorem the left-hand side ofEq. (10) may be trans
formed into a volume integral, 

f _r_-_s-::-
3 

drs = aor (rE!!It), 
Ir-sJ 

(11 ) 

where drs is the volume element and the integration is over 
the region !!It . 
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FIG. 1. (a) Region ~ is positioned so that its center C coincides with the 
center C' of region ~'. (b) Region~' is stretched uniformly about its cen
ter C until ~' just contains ~. Here P is the common tangent point to the 
surfaces ofthe two regions. 

Two interesting facts may be immediately deduced from 
Eq. (11). 

(i) Integrate both sides f( )d'Tr over the region ~. The 
left-hand side vanishes by the antisymmetry in (r,s). Thus 

f r d'Tr = O. (12) 

This shows that the center C must lie at the centroid of the 
region ~. It does not follow that C must be in ~ since ~ 
might be nonconvex or even multiply connected. 

(ii) Take the divergence (with respect to r). This gives 

f 4m5(r - s)d'Ts = Tr(a) (rE~). 
Now the quantities (a 1,a2,a3 ) are simply the "depolariza
tion factors" (Nx ,Ny ,Nz ); see Eq. (6). Thus one recovers 
the well-known sum rule3 

(13) 

Equation (11) may be interpreted as the electrostatic 
field 

if(r) = aor, 

due to the volume charge distribution 

{
I (rE~), 

p(r) = 0 (r~~). 

(14) 

(15) 

The potential 'Y (r) associated with the electric field if (r ) 
is, from (14), 

'Y(r) = -! roaor + 'Yo (rE~), (16) 

where 'Yo is a constant chosen so as to ensure that the refer
ence potential is 'Y( (0) = 0 [note that 'Yo has the signifi
cance of 'Y(r = 0) only ifC lies within ~]. The potential 
'Y (r) may also be expressed in terms of its sources (15), 
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'Y(r) =f_1_ d'Ts , 

Ir-sl 
(17) 

We have shown that the region ~ must be of such a 
shape that if it is uniformly charged [according to Eq. ( 15) ], 
the resulting electrostatic field if (r) will be a linear function 
of r (for rE~) according to Eq. (14). We shall now show 
that this property is preserved (with the same C and a) 
under a uniform stretching (or compressing) of the region 
~ about the center C. It is sufficient to consider an infinitesi
mal such stretching; a finite one can always be constructed 
by integration of the infinitesimal case. Under such an infini
tesimal uniform stretching the position vector s of a point on 
the surface of ~ changes to s': 

S' = (1 +A)S (A infinitesimal). (18) 

The new potential 'Y'(r) is, from Eq. (17), 

f sodA 
'Y'(r) = 'Y(r) +A __ s. 

Ir-sl 
(19) 

The last term is the contribution due to the additional vol
ume which consists of a "shell" of thickness Ason. Using 
Gauss' theorem and Eqs. (10), (16), and (17) one has 

f (r-s)odAs f dAs 
'Y'(r) = 'Y(r) -A +Aro --, 

Ir - sl Ir - sl 

f d'Ts 
'Y'(r) = 'Y(r) +U --+Aroaor, 

Ir-sl 
(20) 

'Y'(r) = 'Y(r) + U( -! roaor + 'Yo) + Aroaor, 

'Y'(r) = 'Y(r) + U'Yo. 

Since 'Y (r) changes by only an additive constant (for rE~), 
the new electric field 'fI' (r) is again given by Eq. (14) with 
the same C and a. 

We shall now show that, given the tensor a, the shape of 
the region ~ is uniquely determined. For a given tensor a we 
assume the existence of at least one convex region ~' with 
the property that if it is uniformly charged with charge den
sity p' (r) according to Eq. (15), the associated electric field 
if'(r) will be given by Eq. (14) forrE~'. (The known ellip
soidal solution is an example of such a convex region ~'.) 
Referring to Fig. 1 (a), we position the original region ~ so 
that its center C coincides with the center C' of~' (although 
C' must lie within ~', we allow the possibility of C not lying 
within ~). Now we stretch (or compress) the region ~' 
uniformly about C' until ~' just contains ~ as shown in Fig. 
l(b). This procedure does not alter the shape of ~', the 
location of C', and the tensor a associated with ~'. Denote 
the common tangent point to the surfaces of ~ and~' by P 
as shown. Now consider the "difference problem" whose 
charge density is 

{
I {rE(~' - ~)}, 

p"(r)=p'(r)-p(r) = 0 {r~(~'-~)}, (21) 

since ~ k~" By superposition the associated electric field, 
'fI" = 'fI' - 'fI, must vanish for all rE~. In particular, we 
have 'fI" = 0 at P. But this is a contradiction (unless p" = 0 
everywhere) because all the charge is positive and lies on one 
side of the tangent plane at P. Therefore ~' - ~ = 0, i.e., 
the two regions must coincide. Thus choosing~' to be the 
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known ellipsoidal solution, we can conclude that ~ must be 
an ellipsoid. 

III. CONCLUSION 

We have investigated the possible shape of a region ~, 
filled with a homogeneous isotropic dielectric, which has the 
property of acquiring a uniform polarization P under the 
influence of an arbitrary (previously) uniform electric field 
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Eo. It is well known that ellipsoids have this property. By 
demonstrating the uniqueness of the shape of ~, we have 
shown that ~ must be an ellipsoid. 

I A. M. Portis, Electromagnetic Fields: Sources and Media (Wiley, New 
York. 1978), pp. 135 and 136. 

2H. S. Zapolsky, Am. J. Phys. 55, 77,1987. 
31 am indebted to H. S. Zapolsky for pointing out that the sum rule can be 
obtained in this manner. 
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The model of an electron bound to an impurity (or to a core hole) and interacting with a 
boson field is analyzed in terms of bosonic variables symmetry adapted to the spherical 
symmetry about the impurity center. It is shown that the use ofthis appropriate set of variables 
considerably simplifies the solution of the variational problem based on a Lee-Low-Pines-type 
of ansatz for the ground-state variational wave function. 

I. INTRODUCTION 

Quasiparticle excitations may sometimes be envisaged 
as built up by coupling a bare electron (or hole) to a boson 
field. Well-known examples are the polaron l and the plas
maron2 where the "dressing" of the bare excitation is pro
vided by the coupling to (optical) phonons and to plasmons, 
respectively. In all cases one starts by reducing the problem 
to the solution of a model Hamiltonian with a linear coupling 
between the bare particle and the boson field, and then pro
ceeds to determine its ground state and lowest excited states 
by a variational procedure. Methods of solution differ at this 
stage, as they are based either on the use of the so-called 
"coherent states,,3 or on the Feynman path integral ap
proach.4 

In the problem above one can take full advantage of the 
conservation of the total linear momentum since the medium 
in which the bare particle is embedded is regarded as being 
homogeneous and isotropic. The presence of an impurity 
center (such as a localized core hole) spoils, however, the 
conservation of linear momentum and makes it apparently 
more difficult to solve the variational problem. In particular, 
if the additional interaction between the bare particle and the 
impurity center can sustain bound states, one is interested in 
determining the binding energy of the bound quasiparticle. 
Examples are the bound polaron in ionic insulators and 
( core) excitons in semiconductors. 

Since the presence of an impurity center destroys the 
homogeneity but not the isotropy, the total angular momen
tum about the impurity center is still a conserved quantity 
and one may make use of this conservation explicitly to sim
plify the solution of the variational problem. As previous 
treatments of this problem based on the use of coherent 
states5,6 do not seem to have fully exploited the conservation 
of angular momentum, we provide in this note the math
ematical framework based on this conservation law. Possible 
applications (such as to the physics of the metallic rare 
earths) and extensions to systems with lower symmetry re
main open. 

II. ANGULAR VARIABLES FOR THE BOSON FIELD 

For the sake of definiteness, we consider the problem of 
an electron and a core hole (or impurity) localized at r = 0, 

a) Permanent address: Dipartimento di Fisica, Universita degli Studi di 
Roma "La Sapienza," 00185 Roma, Italy. 

which interact among themselves through a spherically sym
metric bare potential Vb (r). Both particles are also coupled 
to a plasmon field which provides the screening to vb(r). 
The total Hamiltonian can be written as2

•
7

•
8 (Ii = 1) 

A p2 
H =--+vb(r) + LWlklot Ok 

2nz* k 

+ L (Wk(r)ok + W:(r)ot). (2.1) 
k 

Here Ok and ot are annihilation and creation operators for 
plasmons with wave vector k that satisfy the usual commuta
tion relation 

[ Ok ,ot, ] = I5k.k,; (2.2) 

Wlkl is the plasmon dispersion relation that we may conve
niently take of the form8 

Wlkl = wp + k2/2nz, (2.3) 

where wp is the plasma frequency and nz is the (bare) elec
tronic mass; Wk (r) is the coupling between the electron (e) 
and the core hole (h) with the plasmons 

Wk (r) = V~ (r) + Vfkl' 

where 

v e (r) V e eik•r k Ikl' 

V~ = [t'"(k)w~!2Owlkl ] 1/2, 

and 

V~I = - Sc (Ik!> Vjkl' 

(2.4) 

(2.5) 

(2.6) 

t'" (k) = 41re2/k 2 being the Fourier transform of the Cou
lomb potential, n the (quantization) volume, and Sc (Ikl) 
the structure factor of the core hole. In Eq. (2.1) the effec
tive electronic mass nz * includes possible band-structure ef
fects. 

The model Hamiltonian (2.1) treats the excitations of 
the (metallic) background, wherein the electron and the im
purity center are embedded, in terms of "collective vari
ables.,,9 Other forms of the coupling (2.5) are possible when 
the background represents, e.g., electron-hole pair excita
tions in a semiconductorlO or optical phonons in an ionic 
material. 1 In all cases the Hamiltonian can be cast in the 
form (2.1). 

In the absence of the electron, the Hamiltonian that re
sults from (2.1) describes the relaxation about the impurity 
and can be solved exactly in terms of "displaced" plasmon 
oscillators. 11 When the sole electron is present, on the other 
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hand, the Hamiltonian that results from (2.1) commutes 
with the total linear momentum operator 

~ = - iV + L kat ak , (2.7) 
k 

because virtual creations or absorptions of plasmons are 
compensated by the recoil of the electron. This fact is indeed 
essential for the variational treatment in terms of coherent 
states3 in order to obtain the effective mass of the electron 
due to "dressing" by the boson field, i.e., for obtaining not 
only the ground state but also the low-lying excited states of 
the Hamiltonian. 

Since the medium about the impurity center is isotropic 
[cf., Eqs. (2.3) and (2.6)], the Hamiltonian (2.1) should 
not be affected by rotating the electron and the medium si
multaneously about the center. To show this invariance ex
plicitly, it is convenient first to rewrite Eq. (2.1) in an alter
native form by transforming canonically the boson operators 
into the angular momentum representation: 

(2.8) 

qt(ktnz) = k [~]1/2 i dk Yt'~ (k)at, 
(21T) 417 

where the tilde signifies that taking the continuum limit is 
understood before performing the angular integration. One 
may readily verify that the new operators satisfy the commu
tation relation 

[q(ktnz),qt(k 't'nz')] = o(k - k ')Ot'<",O",rn" (2.9) 

Expandin& the plane wave in Eq. (2.5) into spherical har
monics of k and r and using the orthonormality of the spheri
cal harmonics, we can then rewrite the Hamiltonian (2.1) as 
follows: 

+ LX> dk r~o(q(kO) + qt(kO») 

+ (OO dk L (r~(;n (r)q(ktnz) 
Jo I'~n 

+ r~{n' (r)*qt(ktnz»), 

where we have introduced the notation 

r~t'rn (r) = r~1 (r) Ylm (r), 

and 

r~l(r) =41Tk [~]1/2Vfkl iljl(kr), 
(21T) 

(2.10) 

(2.11 ) 

(2.12) 

jl (kr) being the spherical Bessel function of order I and i the 
imaginary unit. Notice that Eq. (2.10) allows one to analyze 
the plasmon relaxation into multipole components. By the 
same token, one sees from Eq. (2.10) that only the "mono
pole" relaxation couples to the spherically symmetric core 
hole. 

Simultaneous rotations of the electron and the plasmon 
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background can now be achieved in terms of the total angu
lar momentum operators 

L+ = t+ + (OO dk L [t'(t+ 1) -nz(nz + 1)]1/2 
Jo 1m 

Xqt(ktnz + 1)q(ktnz), 

L_ = t_ + lOO dk ~ [t'(t+ 1) -nz(nz _1)P/2 

Xqt(ktnz - 1)q(ktnz), 

L z = ~ + (OO dk Lnzqt(ktnz)q(ktnz), 
Jo I'm 

(2.13) 

where t= - irxV is the angular momentum operator for 
the electron and t± = c: ± it;,. It may be verified that the 
operators (2.13) correctly satisfy the usual commutation re
lations (Ii = 1) 

A A A A A A 

[Lz,L+ 1 =L+, [Lz,L-l = -L_, 

[L+, L_] = 2Lz ' 

(2.14 ) 

which justifies identifying them as angular momentum oper
ators in the first place. It may also be verified that the Hamil
tonian (2.10) commutes with the operators (2.13), the angular 
momentum quanta absorbed or released by the plasmon 
field being exactly compensated by the recoil of the electron. 
How this conservation law can be exploited to simplify the 
solution to the variational problem will be considered in the 
next section. 

III. SOLUTION TO THE VARIATIONAL PROBLEM IN 
ANGULAR VARIABLES 

We look for a variational solution to the model Hamilto
nian (2.10) based on the ansatz 

1<I>(r» LM = exp{ ~(r) }IO)tPLM (r). (3.1) 

Here 10) denotes the ground state of the free-boson field, 
tPLM (r) is a single-particle wave function to be specified be
low, and S (r) is taken to be linear in the bosons operators in 
analogy with the exact solution to the core-hole problem. 11 

The symmetry labels LM for the rotation group are common 
to both sides ofEq. (3.1) since the operator S(r) is assumed 
to be an invariant of that group, namely, to satisfy the condi
tion 

(3.2) 

where the label a distinguishes the three operators (2.13). 
The ansatz (3.1) is then understood to hold for the lowest 
state of each symmetry. It may be verified that the (anti
Hermitian) choice 

~(r) = (00 dk L ([kt'rn (r)q(ktnz) - [tt'rn (r)qt(ktnz») Jo (;n 

(3.3 ) 

satisfies the requirement (3.2) provided the functions 
[kr~, (r) belong to the symmetry species tnz of the rotation 
group: 

[Urn (r) =[u(r)Yt'rn (r). (3.4) 

By minimizing the expectation value of the Hamiltonian 
(2.10) for the state (3.1) one obtains a set of coupled differ-
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ential equations for the unknown functions Ik~n'< (r) and 
tPLM(r) which need to be solved self-consistentiy: 

- _1_ V21un< (r) + wklun< (r) 
2nz* - -

1 Vr/I1.M(r) .. 
- - V Iu", (r)" + 'l(r)"V Iun'< (r) 

nz* - r/I1.M(r) -

i V"(ltPLM (rWj(r») 1 
+ 2" [un'< (r) ItPLM (r) 12 + 4nz*[k~n'< (r) 

V"(t/!*LM(r)V tPLM(r) - tPLM(r)V t/!*LM(r» 
x--~~--~~----~~--~~---

ItPLM(rW 

= rk~'" (r) + r!08ro , (3.5a) 

and 

[( 1!2m*)( - iV + nz*t(r)f + "'eIf(r) - E ]tPLM(r) = o. 
(3.5b) 

In Eqs. (3.5) t(r) has the form ofa "plasmon current" 

j(r) = _1_ Leo dk L (lu", (r)V IrE", (r) 
- 2inz * 0 E", - -

(3.6) 

while "'elf (r) indicates the (spherically symmetric) effective 
potential seen by the electron 

1 Leo "'eIf(r) = "'b (r) + -- dk ~ V IrE", (r)"V jjk~ (r) 
2 * - _w, 
nz 0 '" 

+ Leo dkwk ~[rE'" (r)[u", (r) 

- Leo dk ~ [(rkE", (r) + r!081,o)[rl'", (r) 

+ (rkl'n'< (r) + r!081,o)* [kE", (r)]. (3.7) 

Notice that Eq. (3.5a) is inhomogeneous owing to the pres
ence of the coupling terms at its right-hand side. We shall 
specifically be concerned with finding a particular solution 
to this equation because we require on physical grounds the 
functions/un'< (r) to vanish if the coupling terms are allowed 
to vanish.-Equation (3.5b), on the other hand, has the form 
of an ordinary single-particle Schrodinger equation where 
the energy parameter E originates from the subsidiary nor
malization condition of the trial eigenfunction (3.1). 

The structure ofEq. (3.5a) can be simplified as follows. 
We notice at the outset that the last term at its left-hand side 
actually vanishes if we take 

tPLM(r) =RL (r)YLM (1') (3.8) 

with RL (r) real. The constant hole coupling term at the 
right-hand side ofEq. (3.5a) may also be eliminated by set
ting 

[u", (r) =[kl'", (r) + (r!O/Wk )81,0' (3.9) 

whereby Eq. (3.5a) becomes an equation for the electronic 
partlk~", (r) only. The resulting equation is still quite com
plicated to solve, being apparently nonlinear in the set of 
functions Ik~", (r) owing to the presence of the current 
(3.6). However, by exploiting the geometrical as well the 
dynamical symmetry of the problem at hand we can prove 
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that both the transverse and the radial components of j(r) 
vanish identically, i.e., -

t(r) = o. (3.10) 

The vanishing of the transverse component of j(r) follows 
from the identity -

f YE", (r) ~ Y,,,, (r) 
"'= _~ ao 

f Y~", (r) ...E...... Y,,,, (r) = 0, 
"'=-~ alP 

(3.11) 

where 0 and lP are the spherical angles. Equation (3.11), in 
tum, follows from the property of the spherical harmonics 
under time reversal and from the addition theorem they sat
isfy. On the other hand, the radial component ofj(r) 

r'j(r) = _._1_ Leo dk L (21+ 1) (Ik~(r) .!i./rl'(r) 
- 2lnz * 0 I' 417' - dr -

- IrAr) .!i. lu(r») 
- dr-

(3.12) 

also vanishes provided the radial functions/u(r) can be tak
en to be either real or purely imaginary. Assuming this to be 
true, we can verify that the solutions of the resulting equa
tion are consistent with this assumption. In fact, making use 
ofEq. (3.10) and averaging over Mweobtain a radial equa
tion for[kAr) (Ref. 12): 

__ 1_ [ ..!.. d_: (r IkAr») _ t( I; 1) Ikc(r)] 
2nz* r dr - -

1 1 dR L (r) d 
+ Wk IkAr) - - --- - IkAr) 

- nz* RL (r) dr dr-

= rkAr) , (3.13) 

whose solutions are either real or purely imaginary for even 
or odd values of t; respectively, reflecting a similar property 
of the source term [cf. Eq. (2.11b)]. 

The following features can be inferred from Eq. (3.13). 
(i) Equation (3.13) is linear in IkA r) and thus it pos

sesses only one solution for all values of the parameters nz * 
and Vk (Ref. 13). 

(ii) Solutions for increasing I ( > 0) are expected to be 
progressively suppressed in the region about the core hole 
and thus they will not contribute appreciably to the relevant 
portion of the effective potential (3.7) if RL (r) is sufficiently 
localized. 

(iii) In the limit oflarge nz* values there is a cancella
tion between the plasmon relaxations due to the core hole 
and to the electron. 

The properties of the spherical harmonics can also be 
used to rewrite the effective potential (3.7) in an explicitly 
invariant form, as shown in the Appendix. 

IV. CLOSE-FORM SOLUTION FOR A PARTICULAR 
CLASS OF SINGLE-PARTICLE ORBITALS 

We have shown above that symmetry arguments allow 
us to reduce the coupled set of equations (3.5) to the simpler 
radial equations (3.13) and (A4). Solution to these equa
tions has still to be tackled numerically unless the orbital 

G. Strinati 983 



                                                                                                                                    

RL (r) is restricted, e.g., to a simple hydrogenic form when 
Vb is a Coulombic potential: 

(4.1 ) 

AL being a normalization constant. In this case a solution to 
Eq. (3.13) can be obtained in a closed form and it will de
pend parametrically on y. To this end, we follow Ref. 6 and 
express the solution to Eq. (3.13) in terms of the associated 
Green's function 

r(r) = 100 

dr' Y (r,r')re(r'). (4.2) 

(The dependence of these functions on k and E is under
stood throughout.) The Green's function, in tum, can be 
expressed in terms of the regular and irregular solutions to 
the homogeneous equation associated with Eq. (3.13) 14: 

Y' 1 {fYi(r)f(r') (r<r'), 
(r,r) = - W(r') f(r)fYi(r') (r>r'), (4.3) 

where W(r) is the Wronskian 

W(r) = f (r) dfYi (r) _ fYi (r) df (r) . (4.4) 
dr dr 

Suitable boundary conditions require the Green's function 
to remain bounded everywhere. 

The solutions to the homogeneous equation associated 
with Eq. (3.13) whereby RL (r) is taken of the form (4.1) 
can be readily obtained by setting 

of the square roots. Notice that every unknown turns out to 
be positive definite. 

The Green's function (4.3) can now be written in terms 
of the regular (<I» and irregular ('11) Kummer's functions: 

Y (r,r') 
= 2/n*[r(a)/r(b)] Cb-Ir"lr'b-"Ie-2Yr'e- (E/2)(r+O 

{
<I> (a,b,Cr) '11 (a,b,Cr') 

X '11 (a,b,Cr)<I>(a,b,Cr') 

where r is Euler's gamma function. 

(4.10) 

The restricted form (4.1) requires us to replace solving 
the differential equation (A4) for RL (r) with finding the 
minimum of the function 

E(y) =A i 100 

dre- 2yrr L + I 

X [ 2(L + l)y - yr + Velf (r)r] 
2/n* 

(4.11 ) 

which determines the parameter y self-consistently together 
with the screening functions (4.2). 
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(4.5) APPENDIX: EFFECTIVE POTENTIAL FOR THE RADIAL 
EQUATION 

where Fstands for either fYi or f and (E,17,C) are constants 
to be determined. The transformed equation for w then 
reads: 

d: w(Cr) + [2(L + 17 + 1) _ 2y _ E] !!-. w(Cr) 
dr r dr 

+([17(17-1) + 217(L + 1) -ttE+ 1)](lIr) 

- [2Y17 + 17E + E(L + 1)]( lIr) 

+ ~/4 + q - 2/n*wk}w(Cr) = 0, 

which reduces to the standard Kummer's equation 15 

(4.6) 

d2 (b) d aC ---::2 w(Cr) + - - C - w(Cr) - - w(Cr) = 0, 
~ r ~ r 

provided we identify 

b = 2 (L + 17 + 1), C = E + 2y, 

172 + 17(2L + 1) = ttE+ 1), 

aC = 2Y17 + 17E + E(L + 1), 

~ + 4q - 8/n*Wk = 0. 

(4.7) 

(4,8) 

The five unknowns here are thus determined uniquely by 
solving the quadratic equations for E and 17: 

E=2(y+2/n*Wk)I/2_y), (4.9) 

17=~ [(2L+ 1)2+4ttE+ 1»)1/2_ (2L+ 1)], 

where the boundary conditions have been used to fix the sign 
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The effective potential (3.7) can be rewritten in terms of 
the radial functions/u(r) alone. For the last two terms at 
the right-hand side OfEq. (3.7) this can be simply achieved 
by using the addition theorem for spherical harmonics. For 
the second term there, one has to express the gradient opera
tors in spherical coordinates and to make use of the identity 

f [aYt'm (r) aY~m (r) _1_ aYt'm (r) aY~m (r) ] 
m = - I a() a() + sin2

() alP alP 
= [(2E+ 1)/41T]ttE+ 1), (A1) 

which follows from Eq. (3.11) after straightforward mani
pulations. The result is 

I V [rIm (r)'V [Um (r) t'm 
= ~ (2~: 1) [I d[~:r) 12 + ttE; 1) I[u(r) 12] , 

(A2) 
so that: 

+ I (2E + 1) roo dk {_I_I d[k/(r) 12 
I 417' Jo 2/n* dr 

[
ttE+l) ] 2 

+ 2/n*r + Wk 1 [k/(r) 1 

- 2 r~Ar) [rAr) } , (A3) 
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where the contribution of the hole toikt'(r) is present only 
for 1'= 0 [cf. Eq. (3.9)]. Taking Eqs. (3.8) and (3.10) into 
account, the effective Schrodinger equation (3.Sb) becomes 
eventually: 

~.!. (r dRL (r») 
,:z dr dr 

{ 
L(L+l)} + 2nz· [E - U'e1f (r)] - ,:z Rdr) = O. 

(A4) 
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